Zakaria Mohamed Barakat, Zheng Dehua, Apfel Ulf-Peter, Nagata Takahiro, Kenawy El-Refaie S, Lin Jianjian
Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, China.
Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40186-40193. doi: 10.1021/acsami.0c06141. Epub 2020 Aug 25.
Intensive research is being conducted into highly efficient and cheap nanoscale materials for the electrocatalytic oxidation of water. In this context, we built heterostructures of multilayered CoNi-cyanide bridged coordination (CoNi-CP) nanosheets and graphene oxide (GO) sheets (CoNi-CP/GO) as a source for heterostructured functional electrodes. The layered CoNi-CP/GO hybrid components heated in nitrogen gas (N) at 450 °C yield CoNi-based carbide (CoNi-C) through thermal decomposition of CoNi-CP, while GO is converted into reduced GO (rGO) to finally form a CoNi-C/rGO-450 composite. The CoNi-C/rGO-450 composite shows a reasonable efficiency for oxygen evolution reaction (OER) through water oxidations in alkaline solution. Meanwhile, regulated annealing of CoNi-CP/GO in N with thiourea at 450 and 550 °C produces CoNi-based sulfide (CoNi-S) rather than CoNi-C between rGO sheets co-doped by nitrogen (N) and sulfur (S) heteroatoms (NS-rGO) to form CoNi-S/NS-rGO-450 and CoNi-S/NS-rGO-550 composites, respectively. The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm and a Tafel slope of 79.5 mV dec. By applying the iR compensation to remove resistance of the solution (2.1 Ω), the performance is further improved to achieve a current density of 10 mA cm at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec. This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future.
目前正在对用于水的电催化氧化的高效廉价纳米级材料进行深入研究。在此背景下,我们构建了多层钴镍氰化物桥联配位(CoNi-CP)纳米片与氧化石墨烯(GO)片的异质结构(CoNi-CP/GO)作为异质结构功能电极的来源。在450℃的氮气(N)中加热分层的CoNi-CP/GO混合组分,通过CoNi-CP的热分解产生钴镍基碳化物(CoNi-C),而GO转化为还原氧化石墨烯(rGO),最终形成CoNi-C/rGO-450复合材料。CoNi-C/rGO-450复合材料在碱性溶液中通过水氧化对析氧反应(OER)显示出合理的效率。同时,在450℃和550℃下用硫脲在N中对CoNi-CP/GO进行调控退火,在由氮(N)和硫(S)杂原子(NS-rGO)共掺杂的rGO片之间产生钴镍基硫化物(CoNi-S)而不是CoNi-C,分别形成CoNi-S/NS-rGO-450和CoNi-S/NS-rGO-550复合材料。CoNi-S/NS-rGO-550在所有电极中对电催化OER显示出最佳效率,在10 mA cm时过电位为290 mV,塔菲尔斜率为79.5 mV dec。通过应用iR补偿消除溶液电阻(2.1Ω),性能进一步提高,在过电位为274 mV、塔菲尔斜率为70.5 mV dec时实现10 mA cm的电流密度。与目前使用的电催化剂相比,该结果有望成为一种有前景的电催化剂,并为未来的燃料电池应用迈出一步。