Hu Fei, Li Zhuo, Wang Shaofei, Tenhaeff Wyatt E
Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39674-39684. doi: 10.1021/acsami.0c12248. Epub 2020 Aug 21.
Nonuniform electrodeposition and dendritic growth of lithium metal coupled to its chemical incompatibility with liquid electrolytes are largely responsible for poor Coulombic efficiency and safety hazards preventing the successful implementation of energy-dense Li metal anodes. Artificial solid electrolyte interface (ASEI) layers have been proposed to address the morphological evolution and chemical reactions in Li metal anodes. In this study, an ASEI layer consisting of a lithium phosphorus oxynitride (LiPON) thin film electrolyte and gold-alloying interlayer was developed and shown to promote the electrodeposition of smooth, homogeneous, mirror-like Li metal morphologies. The Au layer alloyed with Li, reducing the nucleation overpotential and resulting in a more spatially uniform metal deposit, while the LiPON layer provided a physical barrier between the Li metal and aprotic liquid electrolyte. The effectiveness and integrity of the LiPON protective layer was assessed using impedance spectroscopy and SEM/EDS characterization. Smooth, homogeneous Li morphologies were realized in capacities up to 3 mAh cm plated at 0.1 mA cm. At higher current densities up to 1 mA cm or increased deposition capacities of 6 mAh cm, the LiPON coating fractured due to the localized, nonuniform lithium deposits and rough, dendritic Li morphologies were observed. This approach represents a new strategy in the design of artificial SEIs to enable Li metal anodes with practical areal capacities.
锂金属的不均匀电沉积和枝晶生长,以及其与液体电解质的化学不相容性,在很大程度上导致了库仑效率低下和安全隐患,阻碍了高能量密度锂金属负极的成功应用。人们提出了人工固体电解质界面(ASEI)层来解决锂金属负极中的形态演变和化学反应问题。在本研究中,开发了一种由氮氧化锂磷(LiPON)薄膜电解质和金合金中间层组成的ASEI层,该层能够促进光滑、均匀、镜面状锂金属形态的电沉积。与锂合金化的金层降低了成核过电位,从而产生了空间上更均匀的金属沉积物,而LiPON层则在锂金属和非质子液体电解质之间提供了物理屏障。使用阻抗谱和扫描电子显微镜/能谱(SEM/EDS)表征评估了LiPON保护层的有效性和完整性。在0.1 mA/cm²的电流密度下电镀至3 mAh/cm²的容量时,实现了光滑、均匀的锂形态。在高达1 mA/cm²的更高电流密度或6 mAh/cm²的增加沉积容量下,LiPON涂层由于局部不均匀的锂沉积物而破裂,并观察到粗糙的枝晶状锂形态。这种方法代表了一种设计人工SEI的新策略,以实现具有实际面积容量的锂金属负极。