Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.
ACS Nano. 2015 Apr 28;9(4):4379-89. doi: 10.1021/acsnano.5b00876. Epub 2015 Mar 24.
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm(2) leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. The effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. We discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.
电沉积金属锂是一种理想的负极电池电极,但在循环过程中不均匀的微观结构演化导致了降解和安全问题。为了实现实用的锂金属电池,需要更好地了解锂的电镀和剥离过程。在这里,我们使用定制的微制造密封液体池进行原位扫描透射电子显微镜(STEM),以亚微米分辨率成像在非质子液体电解质中锂的最初几个循环的电沉积/溶解过程。在 1 至 25 mA/cm(2)的电流密度下循环会导致晶粒结构的变化,较高的电流密度会产生更针状、更高表面积的沉积物。还探索了电子束的影响,结果发现,即使电子束的暴露最小,也会由于形成的电子束诱导表面膜而改变锂的微观结构。由于稳定的固体电解质相间表面膜的存在,电化学溶解是从晶粒上的孤立点开始的,而不是在整个 Li 表面均匀开始的。我们讨论了对操作型 STEM 液体池成像和锂电池应用的影响。