Suppr超能文献

由电镀铜纳米锥芯和低导热率镍纳米锥覆盖层组成的高效沸腾传热界面。

High-Efficiency Boiling Heat Transfer Interfaces Composed of Electroplated Copper Nanocone Cores and Low-Thermal-Conductivity Nickel Nanocone Coverings.

作者信息

Wu Feifei, Ze Huajie, Chen Shihan, Gao Xuefeng

机构信息

Functional Materials and Interfaces Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Science, Suzhou 215123, P. R. China.

School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39902-39909. doi: 10.1021/acsami.0c10761. Epub 2020 Aug 19.

Abstract

We demonstrate that copper-based super-thin high-efficiency boiling heat transfer (BHT) interfaces can be obtained via electroplating hierarchical nickel nanocone coverings on the surface of copper nanocone cores. By regulating surface morphologies, wettability, and mass and heat transfer properties of hierarchical structures, we reveal the regulation rules of their performance. Based on this, we obtain the optimized BHT interfaces with a thickness of only 6.4 μm, which shows 228% enhancement in the maximal heat transfer coefficient, 71% enhancement in the critical heat flux, and 68% decrease in the superheat for the onset of nucleate boiling, as compared to the flat copper surface. Our studies clearly indicate that, although the in situ growth of nickel nanocones can unavoidably increase the interface thermal resistance of hierarchical structures, its optimization can still enhance BHT performance. This may be ascribed to the coupling of several interface effects such as more heat transfer area, more nucleation sites, smaller bubble departure sizes, and stronger liquid supply ability caused by hierarchical structures. Our work opens up a new avenue for the development of copper-based super-thin high-efficiency BHT interfaces, which would help enhance the efficiency of energy utilization and heat dissipation of various thermal devices.

摘要

我们证明,通过在铜纳米锥芯表面电镀分层镍纳米锥覆盖层,可以获得铜基超薄高效沸腾传热(BHT)界面。通过调节分层结构的表面形貌、润湿性以及质量和传热性能,我们揭示了其性能的调控规律。在此基础上,我们获得了厚度仅为6.4μm的优化BHT界面,与平整铜表面相比,其最大传热系数提高了228%,临界热流密度提高了71%,成核沸腾起始过热度降低了68%。我们的研究清楚地表明,尽管镍纳米锥的原位生长不可避免地会增加分层结构的界面热阻,但其优化仍可提高BHT性能。这可能归因于多种界面效应的耦合,如分层结构导致的更多传热面积、更多成核位点、更小的气泡脱离尺寸和更强的液体供应能力。我们的工作为铜基超薄高效BHT界面的开发开辟了一条新途径,这将有助于提高各种热设备的能量利用和散热效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验