Gao Jianmei, Qin Jieqiong, Chang Junyu, Liu Hanqing, Wu Zhong-Shuai, Feng Liang
Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):38674-38681. doi: 10.1021/acsami.0c10794. Epub 2020 Aug 13.
The rapid development of a NH sensor puts forward a great challenge for active materials and integrated sensing systems. In this work, an ultrasensitive NH sensor based on two-dimensional (2D) wormlike mesoporous polypyrrole/reduced graphene oxide (w-mPPy@rGO) heterostructures, synthesized by a universal soft template method is reported, revealing the structure-property coupling effect of the w-mPPy/rGO heterostructure for sensing performance improvement, and demonstrates great potential in the integration of a self-powered sensor system. Remarkably, the 2D w-mPPy@rGO heterostructrure exhibits preferable response toward NH (Δ/ = 45% for 10 ppm NH with a detection limit of 41 ppb) than those of the spherical mesoporous hybrid (s-mPPy@rGO) and the nonporous hybrid (n-PPy@rGO) due to its large specific surface area (193 m/g), which guarantees fast gas diffusion and transport of carriers. Moreover, the w-mPPy@rGO heterostructures display outstanding selectivity to common volatile organic compounds (VOCs), HS, and CO, prominent antihumidity inteference superior to most existing chemosensors, superior reversibility and favorable repeatability, providing high potential for practicability. Thus, a self-powered sensor system composed of a nanogenerator, a lithium-ion battery, and a w-mPPy@rGO-based sensor was fabricated to realize wireless, portable, cost-effective, and light-weight NH monitoring. Impressively, our self-powered sensor system exhibits high response toward 5-40 mg NHNO, which is a common explosive to generate NH via alkaline hydrolysis, rendering it a highly prospective technique in a NH-based sensing field.
氨气传感器的快速发展对活性材料和集成传感系统提出了巨大挑战。在这项工作中,报道了一种基于二维(2D)蠕虫状介孔聚吡咯/还原氧化石墨烯(w-mPPy@rGO)异质结构的超灵敏氨气传感器,该结构通过通用软模板法合成,揭示了w-mPPy/rGO异质结构对传感性能改善的结构-性能耦合效应,并展示了其在自供电传感器系统集成中的巨大潜力。值得注意的是,二维w-mPPy@rGO异质结构对氨气表现出更好的响应(对于10 ppm氨气,Δ/ = 45%,检测限为41 ppb),优于球形介孔杂化物(s-mPPy@rGO)和无孔杂化物(n-PPy@rGO),这归因于其大的比表面积(193 m/g),保证了快速的气体扩散和载流子传输。此外,w-mPPy@rGO异质结构对常见挥发性有机化合物(VOCs)、硫化氢和一氧化碳表现出出色的选择性,具有优于大多数现有化学传感器的显著抗湿度干扰、卓越的可逆性和良好的重复性,具有很高的实用潜力。因此,构建了一个由纳米发电机、锂离子电池和基于w-mPPy@rGO的传感器组成的自供电传感器系统,以实现无线、便携、经济高效且重量轻的氨气监测。令人印象深刻的是,我们的自供电传感器系统对5-40 mg硝酸铵表现出高响应,硝酸铵是一种常见的炸药,可通过碱性水解产生氨气,使其成为基于氨气传感领域中一项极具前景的技术。