Suppr超能文献

具有持久压缩性和可调电导率的高弹性水合纤维素材料

Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity.

作者信息

Chen Chaoji, Song Jianwei, Cheng Jian, Pang Zhenqian, Gan Wentao, Chen Gegu, Kuang Yudi, Huang Hao, Ray Upamanyu, Li Teng, Hu Liangbing

机构信息

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.

Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States.

出版信息

ACS Nano. 2020 Dec 22;14(12):16723-16734. doi: 10.1021/acsnano.0c04298. Epub 2020 Aug 6.

Abstract

Anisotropic cellular materials with direction-dependent structure and durable mechanical properties enable various applications (.., nanofluidics, biomedical devices, tissue engineering, and water purification), but their widespread use is often hindered by complex and scale-limited fabrication and unsatisfactory mechanical performance. Here, inspired by the anisotropic and hierarchical material structure of tendons, we demonstrate a facile, scalable top-down approach for fabricating a highly elastic, ionically conductive, anisotropic cellulosic material (named elastic wood) directly from natural wood chemical treatment. The resulting elastic wood demonstrates good elasticity and durable compressibility, showing no sign of fatigue after 10 000 compression cycles. The chemical treatment not only softens the wood cell walls by partially removing lignin and hemicellulose but introduces an interconnected cellulose fibril network into the wood channels. Atomistic and continuum modeling further reveals that the absorbed water can freely and reversibly move inside the elastic wood and therefore helps the elastic wood accommodate large compressive deformation and recover to its original shape upon compression release. In addition, the elastic wood showed a high ionic conductivity of up to 0.5 mS cm at a low KCl concentration of 10 M, which can be tuned by changing the compression ratio of the material. The demonstrated elastic, mechanically robust, and ionically conductive cellulosic material combining inherited anisotropic cellular structure from natural wood and a self-formed internal gel may find a variety of potential applications in ionic nanofluidics, sensors, soft robots, artificial muscle, environmental remediation, and energy storage.

摘要

具有方向依赖性结构和持久机械性能的各向异性细胞材料可用于多种应用(如纳米流体、生物医学设备、组织工程和水净化),但其广泛应用常常受到复杂且受规模限制的制造工艺以及不尽人意的机械性能的阻碍。在此,受肌腱各向异性和分层材料结构的启发,我们展示了一种简便、可扩展的自上而下的方法,通过化学处理直接从天然木材制备一种高弹性、离子导电的各向异性纤维素材料(称为弹性木材)。所得的弹性木材表现出良好的弹性和持久的压缩性,在10000次压缩循环后没有疲劳迹象。化学处理不仅通过部分去除木质素和半纤维素使木材细胞壁软化,还在木材通道中引入了相互连接的纤维素原纤维网络。原子和连续介质模型进一步揭示,吸收的水可以在弹性木材内部自由且可逆地移动,因此有助于弹性木材承受大的压缩变形,并在压缩释放后恢复到其原始形状。此外,弹性木材在10⁻³ M的低KCl浓度下显示出高达0.5 mS cm⁻¹ 的高离子电导率,这可以通过改变材料的压缩比来调节。这种结合了天然木材继承的各向异性细胞结构和自形成内部凝胶的弹性、机械坚固且离子导电的纤维素材料,可能在离子纳米流体、传感器、软机器人、人造肌肉、环境修复和能量存储等方面找到各种潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验