Khalaf-Allah Mohamed
Institute of Traffic Telematics, Technische Universität Dresden, 01062 Dresden, Germany.
Sensors (Basel). 2020 Aug 12;20(16):4516. doi: 10.3390/s20164516.
In this article, the four-anchor time difference of arrival (TDoA)-based three-dimensional (3D) positioning by particle filtering is addressed. The implemented particle filter uses 1000 particles to represent the probability density function (pdf) of interest, i.e., the posterior pdf of the target node's state (position). A resampling procedure is used to generate particles in the prediction step, and TDoA measurements are used to determine the importance, i.e., weight, of each particle to enable updating the posterior pdf and estimating the position of the target node. The simulation results show the feasibility of this approach and the possibility to employ it in indoor positioning applications under the assumed working conditions using, e.g., the ultra-wideband (UWB) wireless technology. Therefore, it is possible to enable unmanned air vehicle (UAV) positioning applications, e.g., inventory management in large warehouses, without the need for an excessive number of anchor nodes.
本文探讨了基于四锚点到达时间差(TDoA)的粒子滤波三维(3D)定位方法。所实现的粒子滤波器使用1000个粒子来表示感兴趣的概率密度函数(pdf),即目标节点状态(位置)的后验概率密度函数。在预测步骤中使用重采样过程来生成粒子,并使用TDoA测量来确定每个粒子的重要性,即权重,以便更新后验概率密度函数并估计目标节点的位置。仿真结果表明了该方法的可行性,以及在假设工作条件下使用例如超宽带(UWB)无线技术将其应用于室内定位的可能性。因此,无需过多的锚节点就可以实现无人飞行器(UAV)定位应用,例如大型仓库中的库存管理。