Suppr超能文献

通过连续的能量和电子转移过程增强纳米混合配体金属有机框架的光催化性能。

Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal-Organic Frameworks through Sequential Energy and Electron Transfer Process.

作者信息

Kim Miyeon, Oh Jung Suk, Kim Byung Hoon, Kim A Yeong, Park Kyoung Chul, Mun Junyoung, Gupta Gajendra, Lee Chang Yeon

机构信息

Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea.

Department of Physics and Research Institute of Basic Science, Incheon National University, 12-1, Songdo-dong, Yeonsu-gu, Incheon 22012, Republic of Korea.

出版信息

Inorg Chem. 2020 Sep 8;59(17):12947-12953. doi: 10.1021/acs.inorgchem.0c02079. Epub 2020 Aug 18.

Abstract

Effective sequestration of harmful organic pollutants from wastewater has been a persistent concern in the interest of environmental and ecological protection from pollution and hazards. Currently, common water treatment technologies such as adsorption, coagulation, and membranes are expensive and not greatly effective. A new class of organic and inorganic composite metal-organic frameworks (MOFs) has emerged as an essential class of materials for numerous applications, including photocatalytic degradation of organic pollutants. Herein, we present a nanosize mixed-ligand MOF (nMLM) which was successfully synthesized by reacting a Zr metal source with a mixture of pyrene and porphyrin building units and further utilized as photocatalyst in the photodegradation of rhodamine B (RhB). The nMLM MOF showed excellent photocatalytic efficiency, which was due to the complementary absorption and sequential energy and electron transfer properties of its building blocks, pyrene and porphyrin. We also propose herein a possible mechanism of the photocatalytic function of the material.

摘要

为了保护环境和生态免受污染及危害,从废水中有效隔离有害有机污染物一直是人们持续关注的问题。目前,诸如吸附、混凝和膜分离等常见的水处理技术成本高昂且效果不佳。一类新型的有机-无机复合金属有机框架材料(MOFs)已成为众多应用领域的重要材料,包括光催化降解有机污染物。在此,我们展示了一种纳米尺寸的混合配体MOF(nMLM),它是通过使锆金属源与芘和卟啉构建单元的混合物反应成功合成的,并进一步用作光催化剂用于罗丹明B(RhB)的光降解。nMLM MOF表现出优异的光催化效率,这归因于其构建单元芘和卟啉的互补吸收以及连续的能量和电子转移特性。我们在此还提出了该材料光催化功能的一种可能机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验