Suppr超能文献

纽约市新冠疫情聚集性病例及相关背景因素的空间分析

Spatial analysis of COVID-19 clusters and contextual factors in New York City.

作者信息

Cordes Jack, Castro Marcia C

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston 02115, MA, USA.

Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston 02115, MA, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2020 Aug;34:100355. doi: 10.1016/j.sste.2020.100355. Epub 2020 Jun 21.

Abstract

Identifying areas with low access to testing and high case burden is necessary to understand risk and allocate resources in the COVID-19 pandemic. Using zip code level data for New York City, we analyzed testing rates, positivity rates, and proportion positive. A spatial scan statistic identified clusters of high and low testing rates, high positivity rates, and high proportion positive. Boxplots and Pearson correlations determined associations between outcomes, clusters, and contextual factors. Clusters with less testing and low proportion positive tests had higher income, education, and white population, whereas clusters with high testing rates and high proportion positive tests were disproportionately black and without health insurance. Correlations showed inverse associations of white race, education, and income with proportion positive tests, and positive associations with black race, Hispanic ethnicity, and poverty. We recommend testing and health care resources be directed to eastern Brooklyn, which has low testing and high proportion positives.

摘要

识别检测机会少且病例负担重的区域对于了解新冠疫情中的风险和分配资源至关重要。利用纽约市邮政编码级别的数据,我们分析了检测率、阳性率和阳性比例。空间扫描统计识别出了检测率高低、阳性率高以及阳性比例高的聚集区。箱线图和皮尔逊相关性分析确定了结果、聚集区和背景因素之间的关联。检测少且阳性检测比例低的聚集区收入、教育水平较高,白人人口较多,而检测率高且阳性检测比例高的聚集区黑人比例过高且没有医疗保险。相关性分析表明,白人种族、教育水平和收入与阳性检测比例呈负相关,与黑人种族、西班牙裔和贫困呈正相关。我们建议将检测和医疗资源导向布鲁克林东部,该地区检测少且阳性比例高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9d9/7306208/b2ccd3fc38eb/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验