Suppr超能文献

重新加权以解决纵向电子健康记录研究中的不参与和缺失数据偏倚。

Reweighting to address nonparticipation and missing data bias in a longitudinal electronic health record study.

机构信息

Division of Rheumatology, Department of Medicine, University of California, San Francisco.

Department of Epidemiology and Biostatistics, University of California, San Francisco.

出版信息

Ann Epidemiol. 2020 Oct;50:48-51.e2. doi: 10.1016/j.annepidem.2020.06.008. Epub 2020 Jul 2.

Abstract

PURPOSE

We examined whether weighting techniques could account for longitudinal differences in disease activity by race/ethnicity between research participants and nonparticipants with rheumatoid arthritis (RA).

METHODS

We included 377 patients with RA from a public hospital in San Francisco, CA. We estimated the probability of not enrolling in a research study by constructing weights using inverse probability weighting. Disease activity over time by race/ethnicity was analyzed across the entire patient population and among research participants only using multivariable mixed-effects models.

RESULTS

There were no differences in RA disease activity scores between research participants and nonparticipants at baseline; however, longitudinal differences in disease activity between research participants and nonparticipants were found by race/ethnicity. Weighting research participants in accordance with sociodemographic and clinical characteristics of the nonparticipant population did not result in any meaningful changes in disease activity by race/ethnicity over time.

CONCLUSIONS

In our study of patients with RA, inverse probability weighting using select sociodemographic and clinical variables was not sufficient to account for longitudinal disease activity differences by race/ethnicity between research participants and nonparticipants.

摘要

目的

我们研究了在类风湿关节炎(RA)患者中,是否可以通过权重技术来解释研究参与者和非参与者之间因种族/民族而导致的疾病活动的纵向差异。

方法

我们纳入了来自加利福尼亚州旧金山一家公立医院的 377 名 RA 患者。我们通过使用逆概率加权来构建权重,估计了不参加研究的概率。使用多变量混合效应模型,我们在整个患者群体中以及仅在研究参与者中分析了随时间变化的疾病活动与种族/民族之间的关系。

结果

在基线时,研究参与者和非参与者之间的 RA 疾病活动评分没有差异;然而,我们发现研究参与者和非参与者之间的疾病活动存在纵向的种族/民族差异。根据非参与者人群的社会人口学和临床特征对研究参与者进行加权,并没有导致疾病活动随时间变化的任何有意义的种族/民族差异。

结论

在我们对 RA 患者的研究中,使用选定的社会人口学和临床变量进行逆概率加权,不足以解释研究参与者和非参与者之间因种族/民族而导致的纵向疾病活动差异。

相似文献

7
Selection bias was reduced by recontacting nonparticipants.通过再次联系未参与者,减少了选择偏倚。
J Clin Epidemiol. 2016 Aug;76:209-17. doi: 10.1016/j.jclinepi.2016.02.026. Epub 2016 Mar 9.

引用本文的文献

本文引用的文献

3
How to investigate and adjust for selection bias in cohort studies.如何在队列研究中调查和调整选择偏倚。
Acta Obstet Gynecol Scand. 2018 Apr;97(4):407-416. doi: 10.1111/aogs.13319. Epub 2018 Mar 5.
5
Longitudinal drop-out and weighting against its bias.纵向脱落与对其偏差的加权。
BMC Med Res Methodol. 2017 Dec 8;17(1):164. doi: 10.1186/s12874-017-0446-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验