Suppr超能文献

基于电子健康记录的流行病学研究的有效性的叙述性综述。

A narrative review on the validity of electronic health record-based research in epidemiology.

机构信息

Division of Rheumatology, University of California School of Medicine, San Francisco, CA, USA.

Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market St., Philadelphia, PA, 19104, USA.

出版信息

BMC Med Res Methodol. 2021 Oct 27;21(1):234. doi: 10.1186/s12874-021-01416-5.

Abstract

Electronic health records (EHRs) are widely used in epidemiological research, but the validity of the results is dependent upon the assumptions made about the healthcare system, the patient, and the provider. In this review, we identify four overarching challenges in using EHR-based data for epidemiological analysis, with a particular emphasis on threats to validity. These challenges include representativeness of the EHR to a target population, the availability and interpretability of clinical and non-clinical data, and missing data at both the variable and observation levels. Each challenge reveals layers of assumptions that the epidemiologist is required to make, from the point of patient entry into the healthcare system, to the provider documenting the results of the clinical exam and follow-up of the patient longitudinally; all with the potential to bias the results of analysis of these data. Understanding the extent of as well as remediating potential biases requires a variety of methodological approaches, from traditional sensitivity analyses and validation studies, to newer techniques such as natural language processing. Beyond methods to address these challenges, it will remain crucial for epidemiologists to engage with clinicians and informaticians at their institutions to ensure data quality and accessibility by forming multidisciplinary teams around specific research projects.

摘要

电子健康记录(EHRs)在流行病学研究中被广泛应用,但结果的有效性取决于对医疗保健系统、患者和提供者的假设。在这篇综述中,我们确定了使用基于 EHR 的数据进行流行病学分析的四个总体挑战,特别强调了对有效性的威胁。这些挑战包括 EHR 对目标人群的代表性、临床和非临床数据的可用性和可解释性,以及变量和观察水平的缺失数据。每个挑战都揭示了流行病学家需要做出的层层假设,从患者进入医疗保健系统的那一刻起,到提供者记录临床检查结果和对患者进行纵向随访为止;所有这些都有可能使这些数据的分析结果产生偏差。了解这些偏差的程度并加以纠正,需要采用各种方法,从传统的敏感性分析和验证研究,到自然语言处理等新技术。除了解决这些挑战的方法外,让流行病学家与他们所在机构的临床医生和信息学家合作,通过围绕特定研究项目组建多学科团队,确保数据的质量和可及性,仍然至关重要。

相似文献

1
A narrative review on the validity of electronic health record-based research in epidemiology.
BMC Med Res Methodol. 2021 Oct 27;21(1):234. doi: 10.1186/s12874-021-01416-5.
2
Adult patient access to electronic health records.
Cochrane Database Syst Rev. 2021 Feb 26;2(2):CD012707. doi: 10.1002/14651858.CD012707.pub2.
4
Challenges in and Opportunities for Electronic Health Record-Based Data Analysis and Interpretation.
Gut Liver. 2024 Mar 15;18(2):201-208. doi: 10.5009/gnl230272. Epub 2023 Oct 31.
5
Electronic Health Record Challenges, Workarounds, and Solutions Observed in Practices Integrating Behavioral Health and Primary Care.
J Am Board Fam Med. 2015 Sep-Oct;28 Suppl 1(Suppl 1):S63-72. doi: 10.3122/jabfm.2015.S1.150133.
6
Maximizing the use of social and behavioural information from secondary care mental health electronic health records.
J Biomed Inform. 2020 Jul;107:103429. doi: 10.1016/j.jbi.2020.103429. Epub 2020 May 5.
7
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
Constructing Epidemiologic Cohorts from Electronic Health Record Data.
Int J Environ Res Public Health. 2021 Dec 14;18(24):13193. doi: 10.3390/ijerph182413193.
10
Integrating clinical research with the Healthcare Enterprise: from the RE-USE project to the EHR4CR platform.
J Biomed Inform. 2011 Dec;44 Suppl 1:S94-S102. doi: 10.1016/j.jbi.2011.07.007. Epub 2011 Aug 25.

引用本文的文献

3
Implications of the choice of method to identify major depressive disorder in large research cohorts.
J Mood Anxiety Disord. 2025 Jun 19;11:100136. doi: 10.1016/j.xjmad.2025.100136. eCollection 2025 Sep.
4
Are Aggregated Electronic Health Record Datasets Good for Research?
J Gen Intern Med. 2025 Aug 12. doi: 10.1007/s11606-025-09808-9.
8
Association between bipolar disorder and diabetic ketoacidosis/hyperosmolar hyperglycemic state.
Sci Rep. 2025 Jul 2;15(1):22701. doi: 10.1038/s41598-025-08087-y.
9

本文引用的文献

2
Assessing Missing Data Assumptions in EHR-Based Studies: A Complex and Underappreciated Task.
JAMA Netw Open. 2021 Feb 1;4(2):e210184. doi: 10.1001/jamanetworkopen.2021.0184.
3
RiskScape: A Data Visualization and Aggregation Platform for Public Health Surveillance Using Routine Electronic Health Record Data.
Am J Public Health. 2021 Feb;111(2):269-276. doi: 10.2105/AJPH.2020.305963. Epub 2020 Dec 22.
6
Combining structured and unstructured data for predictive models: a deep learning approach.
BMC Med Inform Decis Mak. 2020 Oct 29;20(1):280. doi: 10.1186/s12911-020-01297-6.
7
Trends in the Use of Telehealth During the Emergence of the COVID-19 Pandemic - United States, January-March 2020.
MMWR Morb Mortal Wkly Rep. 2020 Oct 30;69(43):1595-1599. doi: 10.15585/mmwr.mm6943a3.
8
Significant Gains in Rheumatoid Arthritis Quality Measures Among RISE Registry Practices.
Arthritis Care Res (Hoboken). 2022 Feb;74(2):219-228. doi: 10.1002/acr.24444. Epub 2021 Dec 27.
9
Reweighting to address nonparticipation and missing data bias in a longitudinal electronic health record study.
Ann Epidemiol. 2020 Oct;50:48-51.e2. doi: 10.1016/j.annepidem.2020.06.008. Epub 2020 Jul 2.
10
Upcoding: Evidence from Medicare on Squishy Risk Adjustment.
J Polit Econ. 2020 Mar;12(3):984-1026. doi: 10.1086/704756. Epub 2020 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验