Suppr超能文献

双链 DNA 中的骨架电荷输运。

Backbone charge transport in double-stranded DNA.

机构信息

Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.

Department of Physics, University of Cyprus, Nicosia, Cyprus.

出版信息

Nat Nanotechnol. 2020 Oct;15(10):836-840. doi: 10.1038/s41565-020-0741-2. Epub 2020 Aug 17.

Abstract

Understanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups, but experiments so far have yielded seemingly contradictory results that range from insulating or semiconducting to metallic-like behaviour. As a result, the intrinsic charge transport mechanism in molecular junction set-ups is not well understood, which is mainly due to the lack of techniques to form reproducible and stable contacts with individual long DNA molecules. Here we report charge-transport measurements through single 30-nm-long double-stranded DNA (dsDNA) molecules with an experimental set-up that enables us to address individual molecules repeatedly and to measure the current-voltage characteristics from 5 K up to room temperature. Strikingly, we observed very high currents of tens of nanoamperes, which flowed through both homogeneous and non-homogeneous base-pair sequences. The currents are fairly temperature independent in the range 5-60 K and show a power-law decrease with temperature above 60 K, which is reminiscent of charge transport in organic crystals. Moreover, we show that the presence of even a single discontinuity ('nick') in both strands that compose the dsDNA leads to complete suppression of the current, which suggests that the backbones mediate the long-distance conduction in dsDNA, contrary to the common wisdom in DNA electronics.

摘要

理解 DNA 分子中的电荷输运是一个跨学科的长期存在的基本问题。由于 DNA 能够形成多功能和复杂的可编程结构,因此它也具有重要的技术意义。已经使用各种设置报告了 DNA 基结中的电荷输运,但到目前为止,实验产生的结果似乎相互矛盾,从绝缘或半导体到金属样行为都有。因此,分子结设置中的固有电荷输运机制还没有被很好地理解,这主要是由于缺乏形成具有重复性和稳定性的与单个长 DNA 分子接触的技术。在这里,我们报告了通过单个 30nm 长的双链 DNA(dsDNA)分子进行的电荷传输测量,实验设置使我们能够重复测量单个分子,并在 5K 至室温下测量电流-电压特性。引人注目的是,我们观察到了高达数十纳安的非常高的电流,这些电流流过了同质和非同质碱基对序列。在 5-60K 的范围内,电流与温度几乎无关,并且在 60K 以上的温度下呈幂律下降,这与有机晶体中的电荷输运相似。此外,我们还表明,即使在构成 dsDNA 的两条链中存在单个不连续性(“缺口”),也会导致电流完全抑制,这表明骨架介导 dsDNA 中的长距离传导,这与 DNA 电子学中的常见观点相反。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验