Suppr超能文献

蛋白质内部的蛋白质电荷传输:穿越包裹蛋白笼的隧道以及货物蛋白的影响。

Charge Transport across Proteins inside Proteins: Tunneling across Encapsulin Protein Cages and the Effect of Cargo Proteins.

机构信息

Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands.

Biomolecular NanoTechnology, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, 7500 AE Enschede, The Netherlands.

出版信息

Biomolecules. 2023 Jan 13;13(1):174. doi: 10.3390/biom13010174.

Abstract

Charge transport across proteins can be surprisingly efficient over long distances-so-called long-range tunneling-but it is still unclear as to why and under which conditions (e.g., presence of co-factors, type of cargo) the long-range tunneling regime can be accessed. This paper describes molecular tunneling junctions based on an encapsulin (Enc), which is a large protein cage with a diameter of 24 nm that can be loaded with various types of (small) proteins, also referred to as "cargo". We demonstrate with dynamic light scattering, transmission electron microscopy, and atomic force microscopy that Enc, with and without cargo, can be made stable in solution and immobilized on metal electrodes without aggregation. We investigated the electronic properties of Enc in EGaIn-based tunnel junctions (EGaIn = eutectic alloy of Ga and In that is widely used to contact (bio)molecular monolayers) by measuring the current density for a large range of applied bias of ±2.5 V. The encapsulated cargo has an important effect on the electrical properties of the junctions. The measured current densities are higher for junctions with Enc loaded with redox-active cargo (ferritin-like protein) than those junctions without cargo or redox-inactive cargo (green fluorescent protein). These findings open the door to charge transport studies across complex biomolecular hierarchical structures.

摘要

蛋白质之间的电荷传输可以在长距离上惊人地高效——即所谓的长程隧道,但目前仍不清楚为什么以及在哪些条件下(例如,辅助因子的存在、货物的类型)可以进入长程隧道状态。本文描述了基于包裹蛋白(Enc)的分子隧道结,Enc 是一种直径为 24nm 的大型蛋白质笼,可以装载各种类型的(小)蛋白质,也称为“货物”。我们通过动态光散射、透射电子显微镜和原子力显微镜证明,带有和不带有货物的 Enc 可以在溶液中稳定存在,并且可以在没有聚集的情况下固定在金属电极上。我们通过测量 ±2.5V 大applied 偏压范围内的电流密度,研究了 Enc 在基于 EGaIn 的隧道结(EGaIn = Ga 和 In 的共晶合金,广泛用于接触(生物)分子单层)中的电子特性。封装的货物对结的电特性有重要影响。对于带有负载有氧化还原活性货物(类铁蛋白)的 Enc 的结,测量的电流密度高于没有货物或非氧化还原活性货物(绿色荧光蛋白)的结。这些发现为跨复杂生物分子层次结构的电荷传输研究开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f49/9855946/2dfec19c6b3e/biomolecules-13-00174-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验