Life Sciences, Burnet Institute, Melbourne, VIC, Australia.
INBIRS, Facultad de Medicina, Buenos Aires, Argentina.
Methods Mol Biol. 2020;2184:215-224. doi: 10.1007/978-1-0716-0802-9_15.
The analysis of mitochondrial dynamics within immune cells allows us to understand how fundamental metabolism influences immune cell functions, and how dysregulated immunometabolic processes impact biology and disease pathogenesis. For example, during infections, mitochondrial fission and fusion coincide with effector and memory T-cell differentiation, respectively, resulting in metabolic reprogramming. As frozen cells are generally not optimal for immunometabolic analyses, and given the logistic difficulties of analysis on cells within a few hours of blood collection, we have optimized and validated a simple cryopreservation protocol for peripheral blood mononuclear cells, yielding >95% cellular viability, as well as preserved metabolic and immunologic properties. Combining fluorescent dyes with cell surface antibodies, we demonstrate how to analyze mitochondrial density, membrane potential, and reactive oxygen species production in CD4 and CD8 T cells from cryopreserved clinical samples.
分析免疫细胞内的线粒体动态变化可以帮助我们了解基础代谢如何影响免疫细胞功能,以及免疫代谢过程失调如何影响生物学和疾病发病机制。例如,在感染过程中,线粒体的分裂和融合分别与效应和记忆 T 细胞的分化相吻合,导致代谢重编程。由于冷冻细胞通常不适于进行免疫代谢分析,而且由于在采集血液后数小时内对细胞进行分析存在后勤困难,我们已经优化并验证了一种外周血单个核细胞的简单冷冻保存方案,该方案可实现>95%的细胞活力,并保持代谢和免疫特性。我们结合荧光染料和细胞表面抗体,展示了如何分析冷冻临床样本中 CD4 和 CD8 T 细胞的线粒体密度、膜电位和活性氧产生。