Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
FASEB J. 2021 Oct;35(10):e21891. doi: 10.1096/fj.202100929R.
In humans, insulin resistance has been linked to an impaired metabolic transition from fasting to feeding (metabolic flexibility; MetFlex). Previous studies suggest that mitochondrial dynamics response is a putative determinant of MetFlex; however, this has not been studied in humans. Thus, the aim of this study was to investigate the mitochondrial dynamics response in the metabolic transition from fasting to feeding in human peripheral blood mononuclear cells (PBMCs). Six male subjects fasted for 16 h (fasting), immediately after which they consumed a 75-g oral glucose load (glucose). In both fasting and glucose conditions, blood samples were taken to obtain PBMCs. Mitochondrial dynamics were assessed by electron microscopy images. We exposed in vitro acetoacetate-treated PBMCs to the specific IP3R inhibitor Xestospongin B (XeB) to reduce IP3R-mediated mitochondrial Ca accumulation. This allowed us to evaluate the role of ER-mitochondria Ca exchange in the mitochondrial dynamic response to substrate availability. To determine whether PBMCs could be used in obesity context (low MetFlex), we measured mitochondrial dynamics in mouse spleen-derived lymphocytes from WT and ob/ob mice. We demonstrated that the transition from fasting to feeding reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs. In addition, we demonstrated that IP3R activity is key in the mitochondrial dynamics response when PBMCs are treated with a fasting-substrate in vitro. In murine mononuclear-cells, we confirmed that mitochondria-ER interactions are regulated in the fasted-fed transition and we further highlight mitochondria-ER miscommunication in PBMCs of diabetic mice. In conclusion, our results demonstrate that the fasting/feeding transition reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs, and that IP3R activity may potentially play a central role.
在人类中,胰岛素抵抗与从禁食到进食的代谢转变受损(代谢灵活性;MetFlex)有关。先前的研究表明,线粒体动力学反应是 MetFlex 的一个潜在决定因素;然而,这在人类中尚未得到研究。因此,本研究旨在研究人类外周血单核细胞(PBMCs)从禁食到进食的代谢转变中线粒体动力学反应。六名男性受试者禁食 16 小时(禁食),禁食后立即口服 75 克葡萄糖负荷(葡萄糖)。在禁食和葡萄糖两种情况下,采集血样以获得 PBMCs。通过电子显微镜图像评估线粒体动力学。我们将体外用乙酰乙酸处理的 PBMCs 暴露于特定的 IP3R 抑制剂 Xestospongin B(XeB)中,以减少 IP3R 介导的线粒体 Ca 积累。这使我们能够评估 ER-线粒体 Ca 交换在底物可用性对线粒体动力学反应中的作用。为了确定 PBMCs 是否可用于肥胖(低 MetFlex)情况,我们测量了 WT 和 ob/ob 小鼠脾脏衍生淋巴细胞中的线粒体动力学。我们证明,从禁食到进食的转变减少了线粒体-内质网相互作用,诱导了线粒体裂变,并降低了人 PBMCs 中线粒体嵴的密度。此外,我们证明了 IP3R 活性在 PBMCs 用禁食底物体外处理时是线粒体动力学反应的关键。在鼠单核细胞中,我们证实了在禁食-进食过渡中调节了线粒体-内质网相互作用,并且进一步强调了糖尿病小鼠 PBMCs 中线粒体-内质网的通讯错误。总之,我们的研究结果表明,从禁食到进食的转变减少了人 PBMCs 中线粒体-内质网的相互作用,诱导了线粒体裂变,并降低了线粒体嵴的密度,而 IP3R 活性可能发挥了核心作用。