Suppr超能文献

用于癌症治疗的能量转换生物材料:类别、效率和生物安全性。

Energy-converting biomaterials for cancer therapy: Category, efficiency, and biosafety.

作者信息

Dong Lile, Li Wenjuan, Sun Lining, Yu Luodan, Chen Yu, Hong Guobin

机构信息

Department of Radiology, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province, China.

Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Jan;13(1):e1663. doi: 10.1002/wnan.1663. Epub 2020 Aug 18.

Abstract

Energy-converting biomaterials (ECBs)-mediated cancer-therapeutic modalities have been extensively explored, which have achieved remarkable benefits to overwhelm the obstacles of traditional cancer-treatment modalities. Energy-driven cancer-therapeutic modalities feature their distinctive merits, including noninvasiveness, low mammalian toxicity, adequate therapeutic outcome, and optimistical synergistic therapeutics. In this advanced review, the prevailing mainstream ECBs can be divided into two sections: Reactive oxygen species (ROS)-associated energy-converting biomaterials (ROS-ECBs) and hyperthermia-related energy-converting biomaterials (H-ECBs). On the one hand, ROS-ECBs can transfer exogenous or endogenous energy (such as light, radiation, ultrasound, or chemical) to generate and release highly toxic ROS for inducing tumor cell apoptosis/necrosis, including photo-driven ROS-ECBs for photodynamic therapy, radiation-driven ROS-ECBs for radiotherapy, ultrasound-driven ROS-ECBs for sonodynamic therapy, and chemical-driven ROS-ECBs for chemodynamic therapy. On the other hand, H-ECBs could translate the external energy (such as light and magnetic) into heat for killing tumor cells, including photo-converted H-ECBs for photothermal therapy and magnetic-converted H-ECBs for magnetic hyperthermia therapy. Additionally, the biosafety issues of ECBs are expounded preliminarily, guaranteeing the ever-stringent requirements of clinical translation. Finally, we discussed the prospects and facing challenges for constructing the new-generation ECBs for establishing intriguing energy-driven cancer-therapeutic modalities. This article is categorized under: Nanotechnology Approaches to Biology >Nanoscale Systems in Biology.

摘要

能量转换生物材料(ECBs)介导的癌症治疗方式已得到广泛探索,其在克服传统癌症治疗方式的障碍方面取得了显著成效。能量驱动的癌症治疗方式具有独特的优点,包括非侵入性、低哺乳动物毒性、良好的治疗效果以及乐观的协同治疗作用。在这篇综述中,主流的ECBs可分为两类:活性氧(ROS)相关的能量转换生物材料(ROS-ECBs)和热疗相关的能量转换生物材料(H-ECBs)。一方面,ROS-ECBs可以将外源或内源能量(如光、辐射、超声或化学物质)转化为高毒性ROS并释放,以诱导肿瘤细胞凋亡/坏死,包括用于光动力治疗的光驱动ROS-ECBs、用于放射治疗的辐射驱动ROS-ECBs、用于声动力治疗的超声驱动ROS-ECBs以及用于化学动力治疗的化学驱动ROS-ECBs。另一方面,H-ECBs可以将外部能量(如光和磁)转化为热量来杀死肿瘤细胞,包括用于光热治疗的光转换H-ECBs和用于磁热疗的磁转换H-ECBs。此外,还初步阐述了ECBs的生物安全性问题,以满足日益严格的临床转化要求。最后,我们讨论了构建新一代ECBs以建立有趣的能量驱动癌症治疗方式的前景和面临的挑战。本文分类如下:纳米技术在生物学中的应用>生物学中的纳米系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验