Suppr超能文献

猴面包果柄的功能原理——解剖学和生物力学。

Functional principles of baobab fruit pedicels - anatomy and biomechanics.

机构信息

Department of Biology, Institute of Botany, Faculty of Science, Technische Universität Dresden, Germany.

Institute for Building Materials, ETH Zürich, Switzerland.

出版信息

Ann Bot. 2020 Nov 24;126(7):1215-1223. doi: 10.1093/aob/mcaa149.

Abstract

BACKGROUND AND AIMS

Fruit pedicels have to deal with increasing loads after pollination due to continuous growth of the fruits. Thus, they represent interesting tissues from a mechanical as well as a developmental point of view. However, only a few studies exist on fruit pedicels. In this study, we unravel the anatomy and structural-mechanical relationships of the pedicel of Adansonia digitata, reaching up to 90 cm in length.

METHODS

Morphological and anatomical analyses included examination of stained cross-sections from various positions along the stalk as well as X-ray microtomography and scanning electron microscopy. For mechanical testing, fibre bundles derived from the mature pedicels were examined via tension tests. For establishing the structural-mechanical relationships, the density of the fibre bundles as well as their cellulose microfibril distribution and chemical composition were analysed.

KEY RESULTS

While in the peduncle the vascular tissue and the fibres are arranged in a concentric ring-like way, this organization shifts to the polystelic structure of separate fibre bundles in the pedicel. The polystelic pedicel possesses five vascular strands that consist of strong bast fibre bundles. The fibre bundles have a Young's modulus of up to 5 GPa, a tensile strength of up to 400 MPa, a high density (>1 g cm-3) and a high microfibril angle of around 20°.

CONCLUSIONS

The structural arrangement as well as the combination of high density and high microfibril angle of the bast fibre bundles are probably optimized for bearing considerable strain in torsion and bending while at the same time allowing for carrying high-tension loads.

摘要

背景与目的

授粉后,由于果实的持续生长,果柄必须承受不断增加的负荷。因此,从力学和发育的角度来看,它们是很有趣的组织。然而,关于果柄的研究很少。在这项研究中,我们揭示了长达 90 厘米的猴面包树果柄的解剖结构和结构力学关系。

方法

形态学和解剖学分析包括对茎干不同位置的染色横切片进行检查,以及 X 射线微断层扫描和扫描电子显微镜检查。为了进行力学测试,从成熟的果柄中提取纤维束进行拉伸测试。为了建立结构力学关系,分析了纤维束的密度及其纤维素微纤维的分布和化学组成。

主要结果

在花梗中,维管组织和纤维呈同心环状排列,而这种组织在果柄中则转变为单独纤维束的多腔结构。多腔果柄有五条由强韧皮纤维束组成的维管束。纤维束的杨氏模量高达 5 GPa,拉伸强度高达 400 MPa,密度高(>1 g cm-3),微纤维角约为 20°。

结论

韧皮纤维束的结构排列以及高密度和高微纤维角的组合,可能优化了其在扭转和弯曲时承受相当大应变的能力,同时又能承受高张力负载。

相似文献

1
Functional principles of baobab fruit pedicels - anatomy and biomechanics.
Ann Bot. 2020 Nov 24;126(7):1215-1223. doi: 10.1093/aob/mcaa149.
2
A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.
Acta Biomater. 2015 Dec;28:13-22. doi: 10.1016/j.actbio.2015.10.002. Epub 2015 Oct 9.
4
Ontogenetic tissue modification in Malus fruit peduncles: the role of sclereids.
Ann Bot. 2014 Jan;113(1):105-18. doi: 10.1093/aob/mct262. Epub 2013 Nov 27.
6
Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats.
Anim Biotechnol. 2016;27(2):84-95. doi: 10.1080/10495398.2015.1102147.
7
Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata).
Food Res Int. 2017 Sep;99(Pt 1):755-761. doi: 10.1016/j.foodres.2017.06.025. Epub 2017 Jun 19.
10
Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
Ann Bot. 2014 Apr;113(5):789-97. doi: 10.1093/aob/mcu002. Epub 2014 Feb 15.

本文引用的文献

1
Structural and functional imaging of large and opaque plant specimens.
J Exp Bot. 2019 Jul 23;70(14):3659-3678. doi: 10.1093/jxb/erz186.
2
Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.
ACS Appl Mater Interfaces. 2018 Feb 7;10(5):5030-5037. doi: 10.1021/acsami.7b18646. Epub 2018 Jan 26.
3
5
Ontogenetic tissue modification in Malus fruit peduncles: the role of sclereids.
Ann Bot. 2014 Jan;113(1):105-18. doi: 10.1093/aob/mct262. Epub 2013 Nov 27.
6
Enhanced cellulose orientation analysis in complex model plant tissues.
J Struct Biol. 2013 Sep;183(3):419-428. doi: 10.1016/j.jsb.2013.07.001. Epub 2013 Jul 15.
7
Biomechanics of cellular solids.
J Biomech. 2005 Mar;38(3):377-99. doi: 10.1016/j.jbiomech.2004.09.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验