Suppr超能文献

用于相稳定且高效的无机钙钛矿太阳能电池的离子迁移和光致二次离子再分布介绍

Introducing Ion Migration and Light-Induced Secondary Ion Redistribution for Phase-Stable and High-Efficiency Inorganic Perovskite Solar Cells.

作者信息

Huang Jincheng, Yan Huibo, Zhou Dingjian, Zhang Jianfeng, Deng Sunbin, Xu Ping, Chen Rongsheng, Kwok Hoi-Sing, Li Guijun

机构信息

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Sep 9;12(36):40364-40371. doi: 10.1021/acsami.0c12068. Epub 2020 Aug 26.

Abstract

Inorganic halide perovskites have been demonstrated as a promising alternative for light absorption because of their improved thermal stability compared with organic-inorganic halide perovskites. However, low power conversion efficiency and phase instability are major hindrances to their application. Here, a straightforward approach, by adding a layer of CsBr on the top of CsPbI, is reported for high-efficiency and phase-stable CsPbI-based solar cells. Characterizations demonstrate that the bromide ion can migrate from the surface into the bulk of CsPbI, mitigating the nonuniform depth distribution of iodide in the CsPbI absorber and passivating the bulk defects. Impressively, the light illumination can induce secondary-ion redistribution, which is identified as a crucial process to further enhance the carrier extraction efficiency, strengthen the lattice stability, and improve the film homogenization. Accordingly, a high efficiency of 17% is obtained for the CsPbI-based solar cell. Moreover, the unencapsulated device exhibits remarkable phase stability, maintaining 93% of its initial efficiency under room temperature after being stored in the nitrogen glovebox for over 5000 h.

摘要

与有机-无机卤化物钙钛矿相比,无机卤化物钙钛矿因其热稳定性提高而被证明是一种有前景的光吸收替代材料。然而,低功率转换效率和相不稳定性是其应用的主要障碍。在此,报道了一种直接的方法,即在CsPbI顶部添加一层CsBr,用于制备高效且相稳定的基于CsPbI的太阳能电池。表征表明,溴离子可从表面迁移至CsPbI体相中,减轻CsPbI吸收体中碘化物的非均匀深度分布,并钝化体相缺陷。令人印象深刻的是,光照可引起二次离子再分布,这被认为是进一步提高载流子提取效率、增强晶格稳定性和改善薄膜均匀性的关键过程。因此,基于CsPbI的太阳能电池获得了17%的高效率。此外,未封装的器件表现出显著的相稳定性,在氮气手套箱中储存超过5000小时后,在室温下保持其初始效率的93%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验