Suppr超能文献

通过在深度神经网络中嵌入分层知识实现视觉显著性

Visual Saliency via Embedding Hierarchical Knowledge in a Deep Neural Network.

作者信息

Zhou Fei, Yao Rongguo, Liao Guangsen, Liu Bozhi, Qiu Guoping

出版信息

IEEE Trans Image Process. 2020 Aug 19;PP. doi: 10.1109/TIP.2020.3016464.

Abstract

Deep neural networks (DNNs) have been extensively applied in image processing, including visual saliency map pre-diction of images. A major difficulty in using a DNN for visual saliency prediction is the lack of labeled ground truth of visual saliency. A powerful DNN usually contains a large number of trainable parameters. This condition can easily lead to model over-fitting. In this study, we develop a novel method that over-comes such difficulty by embedding hierarchical knowledge of existing visual saliency models in a DNN. We achieve the objective of exploiting the knowledge contained in the existing visual sali-ency models by using saliency maps generated by local, global, and semantic models to tune and fix about 92.5% of the parame-ters in our network in a hierarchical manner. As a result, the number of trainable parameters that need to be tuned by the ground truth is considerably reduced. This reduction enables us to fully utilize the power of a large DNN and overcome the issue of over-fitting at the same time. Furthermore, we introduce a simple but very effective center prior in designing the learning cost function of the DNN by attaching high importance to the errors around the image center. We also present extensive experimental results on four commonly used public databases to demonstrate the superiority of the proposed method over classical and state-of-the-art methods on various evaluation metrics.

摘要

深度神经网络(DNN)已广泛应用于图像处理,包括图像的视觉显著性图预测。使用DNN进行视觉显著性预测的一个主要困难是缺乏视觉显著性的标注真值。一个强大的DNN通常包含大量可训练参数。这种情况很容易导致模型过拟合。在本研究中,我们开发了一种新颖的方法,通过将现有视觉显著性模型的分层知识嵌入到DNN中来克服这种困难。我们通过使用局部、全局和语义模型生成的显著性图以分层方式调整和固定网络中约92.5%的参数,从而实现利用现有视觉显著性模型中包含的知识这一目标。结果,需要由真值调整的可训练参数数量大幅减少。这种减少使我们能够充分利用大型DNN的能力,同时克服过拟合问题。此外,我们在设计DNN的学习成本函数时引入了一个简单但非常有效的中心先验,即高度重视图像中心周围的误差。我们还在四个常用的公共数据库上展示了广泛的实验结果,以证明所提出的方法在各种评估指标上优于经典方法和最新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验