IEEE Trans Biomed Circuits Syst. 2020 Oct;14(5):1065-1078. doi: 10.1109/TBCAS.2020.3018136. Epub 2020 Aug 20.
A digital microfluidic biochip (DMB) is an attractive platform for automating laboratory procedures in microbiology. To overcome the problem of cross-contamination due to fouling of the electrode surface in traditional DMBs, a contactless liquid-handling biochip technology, referred to as acoustofluidics, has recently been proposed. A major challenge in operating this platform is the need for a control signal of frequency 24 MHz and voltage range ±10/±20 V to activate the IDT units in the biochip. In this paper, we present a hardware design that can efficiently activate/de-activated each IDT, and can fully automate an bio-protocol. We also present a fault-tolerant synthesis technique that allows us to automatically map biomolecular protocols to acoustofluidic biochips. We develop and experimentally validate a velocity model, and use it to guide co-optimization for operation scheduling, module placement, and droplet routing in the presence of IDT faults. Simulation results demonstrate the effectiveness of the proposed synthesis method. Our results are expected to open new research directions on design automation of digital acoustofluidic biochips.
数字微流控生物芯片(DMB)是自动化微生物学实验室操作的理想平台。为了克服传统 DMB 中由于电极表面污垢导致的交叉污染问题,最近提出了一种称为声流控的非接触式液体处理生物芯片技术。操作该平台的主要挑战是需要频率为 24 MHz 的控制信号和±10/±20 V 的电压范围来激活生物芯片中的 IDT 单元。在本文中,我们提出了一种硬件设计,可以有效地激活/去激活每个 IDT,并可以完全自动化生物协议。我们还提出了一种容错综合技术,允许我们自动将生物分子协议映射到声流控生物芯片上。我们开发并实验验证了一个速度模型,并使用它来指导在存在 IDT 故障的情况下,操作调度、模块放置和液滴路由的协同优化。仿真结果证明了所提出的综合方法的有效性。我们的研究结果有望为数字声流控生物芯片的设计自动化开辟新的研究方向。