Suppr超能文献

硬件设计与数字声流控生物芯片容错综合

Hardware Design and Fault-Tolerant Synthesis for Digital Acoustofluidic Biochips.

出版信息

IEEE Trans Biomed Circuits Syst. 2020 Oct;14(5):1065-1078. doi: 10.1109/TBCAS.2020.3018136. Epub 2020 Aug 20.

Abstract

A digital microfluidic biochip (DMB) is an attractive platform for automating laboratory procedures in microbiology. To overcome the problem of cross-contamination due to fouling of the electrode surface in traditional DMBs, a contactless liquid-handling biochip technology, referred to as acoustofluidics, has recently been proposed. A major challenge in operating this platform is the need for a control signal of frequency 24 MHz and voltage range ±10/±20 V to activate the IDT units in the biochip. In this paper, we present a hardware design that can efficiently activate/de-activated each IDT, and can fully automate an bio-protocol. We also present a fault-tolerant synthesis technique that allows us to automatically map biomolecular protocols to acoustofluidic biochips. We develop and experimentally validate a velocity model, and use it to guide co-optimization for operation scheduling, module placement, and droplet routing in the presence of IDT faults. Simulation results demonstrate the effectiveness of the proposed synthesis method. Our results are expected to open new research directions on design automation of digital acoustofluidic biochips.

摘要

数字微流控生物芯片(DMB)是自动化微生物学实验室操作的理想平台。为了克服传统 DMB 中由于电极表面污垢导致的交叉污染问题,最近提出了一种称为声流控的非接触式液体处理生物芯片技术。操作该平台的主要挑战是需要频率为 24 MHz 的控制信号和±10/±20 V 的电压范围来激活生物芯片中的 IDT 单元。在本文中,我们提出了一种硬件设计,可以有效地激活/去激活每个 IDT,并可以完全自动化生物协议。我们还提出了一种容错综合技术,允许我们自动将生物分子协议映射到声流控生物芯片上。我们开发并实验验证了一个速度模型,并使用它来指导在存在 IDT 故障的情况下,操作调度、模块放置和液滴路由的协同优化。仿真结果证明了所提出的综合方法的有效性。我们的研究结果有望为数字声流控生物芯片的设计自动化开辟新的研究方向。

相似文献

1
Hardware Design and Fault-Tolerant Synthesis for Digital Acoustofluidic Biochips.
IEEE Trans Biomed Circuits Syst. 2020 Oct;14(5):1065-1078. doi: 10.1109/TBCAS.2020.3018136. Epub 2020 Aug 20.
2
Droplet Size-Aware High-Level Synthesis for Micro-Electrode-Dot-Array Digital Microfluidic Biochips.
IEEE Trans Biomed Circuits Syst. 2017 Jun;11(3):612-626. doi: 10.1109/TBCAS.2017.2653808. Epub 2017 May 19.
3
Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques.
IEEE Trans Biomed Circuits Syst. 2019 Apr;13(2):292-313. doi: 10.1109/TBCAS.2018.2886952. Epub 2018 Dec 14.
4
Advances in Testing Techniques for Digital Microfluidic Biochips.
Sensors (Basel). 2017 Jul 27;17(8):1719. doi: 10.3390/s17081719.
5
A design method based on Bayesian decision for routing-based digital microfluidic biochips.
Analyst. 2022 Mar 14;147(6):1076-1085. doi: 10.1039/d1an02103f.
6
Droplet Size-Aware and Error-Correcting Sample Preparation Using Micro-Electrode-Dot-Array Digital Microfluidic Biochips.
IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1380-1391. doi: 10.1109/TBCAS.2017.2742548. Epub 2017 Sep 29.
8
Defect-aware high-level synthesis and module placement for microfluidic biochips.
IEEE Trans Biomed Circuits Syst. 2008 Mar;2(1):50-62. doi: 10.1109/TBCAS.2008.918283.
9
OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips.
Bioengineering (Basel). 2017 May 19;4(2):45. doi: 10.3390/bioengineering4020045.
10
Digital microfluidic operations on micro-electrode dot array architecture.
IET Nanobiotechnol. 2011 Dec;5(4):152-60. doi: 10.1049/iet-nbt.2011.0018.

本文引用的文献

1
Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices.
Sci Adv. 2021 Jan 6;7(2). doi: 10.1126/sciadv.abc7885. Print 2021 Jan.
2
Contactless, programmable acoustofluidic manipulation of objects on water.
Lab Chip. 2019 Oct 9;19(20):3397-3404. doi: 10.1039/c9lc00465c.
3
Digital acoustofluidics enables contactless and programmable liquid handling.
Nat Commun. 2018 Jul 26;9(1):2928. doi: 10.1038/s41467-018-05297-z.
4
Droplet Size-Aware High-Level Synthesis for Micro-Electrode-Dot-Array Digital Microfluidic Biochips.
IEEE Trans Biomed Circuits Syst. 2017 Jun;11(3):612-626. doi: 10.1109/TBCAS.2017.2653808. Epub 2017 May 19.
5
Preventing Biomolecular Adsorption in Electrowetting-Based Biofluidic Chips.
Anal Chem. 2003 Oct 1;75(19):5097-5102. doi: 10.1021/ac0342673.
6
Commercialization of microfluidic devices.
Trends Biotechnol. 2014 Jul;32(7):347-50. doi: 10.1016/j.tibtech.2014.04.010.
7
Acoustophoretic contactless transport and handling of matter in air.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12549-54. doi: 10.1073/pnas.1301860110. Epub 2013 Jul 15.
8
Magnetic timing valves for fluid control in paper-based microfluidics.
Lab Chip. 2013 Jul 7;13(13):2609-14. doi: 10.1039/c3lc00006k. Epub 2013 Apr 15.
9
Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments.
Proc IEEE Inst Electr Electron Eng. 2004 Jan 1;92(1):22-42. doi: 10.1109/JPROC.2003.820535.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验