Zhu Haodong, Zhang Peiran, Zhong Zhanwei, Xia Jianping, Rich Joseph, Mai John, Su Xingyu, Tian Zhenhua, Bachman Hunter, Rufo Joseph, Gu Yuyang, Kang Putong, Chakrabarty Krishnendu, Witelski Thomas P, Huang Tony Jun
Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA.
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
Sci Adv. 2021 Jan 6;7(2). doi: 10.1126/sciadv.abc7885. Print 2021 Jan.
Acoustics-based tweezers provide a unique toolset for contactless, label-free, and precise manipulation of bioparticles and bioanalytes. Most acoustic tweezers rely on acoustic radiation forces; however, the accompanying acoustic streaming often generates unpredictable effects due to its nonlinear nature and high sensitivity to the three-dimensional boundary conditions. Here, we demonstrate acoustohydrodynamic tweezers, which generate stable, symmetric pairs of vortices to create hydrodynamic traps for object manipulation. These stable vortices enable predictable control of a flow field, which translates into controlled motion of droplets or particles on the operating surface. We built a programmable droplet-handling platform to demonstrate the basic functions of planar-omnidirectional droplet transport, merging droplets, and in situ mixing via a sequential cascade of biochemical reactions. Our acoustohydrodynamic tweezers enables improved control of acoustic streaming and demonstrates a previously unidentified method for contact-free manipulation of bioanalytes and digitalized liquid handling based on a compact and scalable functional unit.
基于声学的镊子为生物粒子和生物分析物的非接触、无标记和精确操作提供了一套独特的工具。大多数声学镊子依赖于声辐射力;然而,伴随的声流由于其非线性性质和对三维边界条件的高敏感性,常常产生不可预测的影响。在这里,我们展示了声流体动力学镊子,它能产生稳定、对称的涡旋对,以创建用于物体操纵的流体动力学陷阱。这些稳定的涡旋能够对流场进行可预测的控制,这转化为操作表面上液滴或颗粒的受控运动。我们构建了一个可编程的液滴处理平台,以展示平面全向液滴传输、液滴合并以及通过一系列连续的生化反应进行原位混合的基本功能。我们的声流体动力学镊子能够更好地控制声流,并展示了一种基于紧凑且可扩展功能单元的、用于生物分析物非接触操纵和数字化液体处理的前所未有的方法。