IEEE Trans Biomed Circuits Syst. 2008 Mar;2(1):50-62. doi: 10.1109/TBCAS.2008.918283.
Recent advances in microfluidics technology have led to the emergence of miniaturized biochip devices, also referred to as lab-on-a-chip, for biochemical analysis. A promising category of microfluidic biochips relies on the principle of electrowetting-on-dielectric, whereby discrete droplets of nanoliter volumes can be manipulated using an array of electrodes. As chemists adapt more bioassays for concurrent execution on such ldquodigitalrdquo droplet-based microfluidic platforms, system integration, design complexity, and the need for defect tolerance are expected to increase rapidly. Automated design tools for defect-tolerant and multifunctional biochips are important for the emerging marketplace, especially for low-cost, portable, and disposable devices for clinical diagnostics. We present a unified synthesis method that combines defect-tolerant architectural synthesis with defect-aware physical design. The proposed approach allows architectural-level design choices and defect-tolerant physical design decisions to be made simultaneously. We use a large-scale protein assay and the polymerase chain reaction procedure as case studies to evaluate the proposed synthesis method. We also carry out simulations based on defect injection to evaluate the robustness of the synthesized biochip designs.
近年来,微流控技术的进步促使微型化生物芯片设备(也称为芯片实验室)的出现,用于生化分析。一类很有前途的微流控生物芯片依赖于介电上电润湿的原理,通过使用电极阵列可以操纵离散的纳升级体积液滴。随着化学家们将更多的生物测定法适应于此类“数字”基于液滴的微流控平台上的并行执行,系统集成、设计复杂性以及对容错性的需求预计将迅速增加。用于容错和多功能生物芯片的自动化设计工具对于新兴市场非常重要,特别是对于用于临床诊断的低成本、便携式和一次性设备。我们提出了一种统一的综合方法,将容错体系结构综合与缺陷感知的物理设计相结合。所提出的方法允许在体系结构级别上进行设计选择和容错的物理设计决策。我们使用大规模蛋白质测定法和聚合酶链反应程序作为案例研究来评估所提出的综合方法。我们还根据缺陷注入进行模拟,以评估综合生物芯片设计的稳健性。