Suppr超能文献

用于生物大分子模拟的iVis降维框架。

ivis Dimensionality Reduction Framework for Biomacromolecular Simulations.

作者信息

Tian Hao, Tao Peng

机构信息

Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States.

出版信息

J Chem Inf Model. 2020 Oct 26;60(10):4569-4581. doi: 10.1021/acs.jcim.0c00485. Epub 2020 Sep 1.

Abstract

Molecular dynamics (MD) simulations have been widely applied to study macromolecules including proteins. However, the high dimensionality of the data sets produced by simulations makes thorough analysis difficult and further hinders a deeper understanding of biomacromolecules. To gain more insights into the protein structure-function relations, appropriate dimensionality reduction methods are needed to project simulations onto low-dimensional spaces. Linear dimensionality reduction methods, such as principal component analysis (PCA) and time-structure-based independent component analysis (t-ICA), could not preserve sufficient structural information. Though better than linear methods, nonlinear methods, such as t-distributed stochastic neighbor embedding (t-SNE), still suffer from the limitations in avoiding system noise and keeping inter-cluster relations. ivis is a novel deep learning-based dimensionality reduction method originally developed for single-cell data sets. Here, we applied this framework for the study of light, oxygen, and voltage (LOV) domains of diatom aureochrome 1a (PtAu1a). Compared with other methods, ivis is shown to be superior in constructing a Markov state model (MSM), preserving information of both local and global distances, and maintaining similarity between high and low dimensions with the least information loss. Moreover, the ivis framework is capable of providing new perspectives for deciphering residue-level protein allostery through the feature weights in the neural network. Overall, ivis is a promising member of the analysis toolbox for proteins.

摘要

分子动力学(MD)模拟已被广泛应用于研究包括蛋白质在内的大分子。然而,模拟产生的数据集的高维度使得全面分析变得困难,进一步阻碍了对生物大分子的深入理解。为了更深入地了解蛋白质的结构-功能关系,需要合适的降维方法将模拟投影到低维空间。线性降维方法,如主成分分析(PCA)和基于时间结构的独立成分分析(t-ICA),无法保留足够的结构信息。尽管非线性方法,如t分布随机邻域嵌入(t-SNE)比线性方法更好,但在避免系统噪声和保持簇间关系方面仍存在局限性。ivis是一种最初为单细胞数据集开发的基于深度学习的新型降维方法。在这里,我们将这个框架应用于硅藻金藻1a(PtAu1a)的光、氧和电压(LOV)结构域的研究。与其他方法相比,ivis在构建马尔可夫状态模型(MSM)、保留局部和全局距离信息以及以最小的信息损失保持高维和低维之间的相似性方面表现出色。此外,ivis框架能够通过神经网络中的特征权重为解读残基水平的蛋白质变构提供新的视角。总体而言,ivis是蛋白质分析工具箱中一个很有前途的成员。

相似文献

1
ivis Dimensionality Reduction Framework for Biomacromolecular Simulations.
J Chem Inf Model. 2020 Oct 26;60(10):4569-4581. doi: 10.1021/acs.jcim.0c00485. Epub 2020 Sep 1.
2
t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations.
J Chem Theory Comput. 2018 Nov 13;14(11):5499-5510. doi: 10.1021/acs.jctc.8b00652. Epub 2018 Oct 9.
3
UMAP as a Dimensionality Reduction Tool for Molecular Dynamics Simulations of Biomacromolecules: A Comparison Study.
J Phys Chem B. 2021 May 20;125(19):5022-5034. doi: 10.1021/acs.jpcb.1c02081. Epub 2021 May 11.
4
Deciphering the Allosteric Process of the Aureochrome 1a LOV Domain.
J Phys Chem B. 2020 Oct 15;124(41):8960-8972. doi: 10.1021/acs.jpcb.0c05842. Epub 2020 Oct 1.
6
nPCA: a linear dimensionality reduction method using a multilayer perceptron.
Front Genet. 2024 Jan 8;14:1290447. doi: 10.3389/fgene.2023.1290447. eCollection 2023.
7
Performance comparison of dimensionality reduction methods on RNA-Seq data from the GTEx project.
Genes Genomics. 2020 Feb;42(2):225-234. doi: 10.1007/s13258-019-00896-6. Epub 2019 Dec 12.
9
Capturing discrete latent structures: choose LDs over PCs.
Biostatistics. 2022 Dec 12;24(1):1-16. doi: 10.1093/biostatistics/kxab030.
10
Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data.
Cell Rep. 2021 Jul 27;36(4):109442. doi: 10.1016/j.celrep.2021.109442.

引用本文的文献

1
2
Optimization of drug-target affinity prediction methods through feature processing schemes.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad615.
4
Collective variable discovery in the age of machine learning: reality, hype and everything in between.
RSC Adv. 2022 Sep 2;12(38):25010-25024. doi: 10.1039/d2ra03660f. eCollection 2022 Aug 30.
5
Explore Protein Conformational Space With Variational Autoencoder.
Front Mol Biosci. 2021 Nov 12;8:781635. doi: 10.3389/fmolb.2021.781635. eCollection 2021.
6
UMAP as a Dimensionality Reduction Tool for Molecular Dynamics Simulations of Biomacromolecules: A Comparison Study.
J Phys Chem B. 2021 May 20;125(19):5022-5034. doi: 10.1021/acs.jpcb.1c02081. Epub 2021 May 11.
7
Deciphering the Allosteric Process of the Aureochrome 1a LOV Domain.
J Phys Chem B. 2020 Oct 15;124(41):8960-8972. doi: 10.1021/acs.jpcb.0c05842. Epub 2020 Oct 1.

本文引用的文献

1
Deciphering the protein motion of S1 subunit in SARS-CoV-2 spike glycoprotein through integrated computational methods.
J Biomol Struct Dyn. 2021 Oct;39(17):6705-6712. doi: 10.1080/07391102.2020.1802338. Epub 2020 Aug 4.
2
Best Practices for Foundations in Molecular Simulations [Article v1.0].
Living J Comput Mol Sci. 2019;1(1). doi: 10.33011/livecoms.1.1.5957. Epub 2018 Nov 29.
3
Autoencoder-Based Detection of Dynamic Allostery Triggered by Ligand Binding Based on Molecular Dynamics.
J Chem Inf Model. 2019 Sep 23;59(9):4043-4051. doi: 10.1021/acs.jcim.9b00426. Epub 2019 Aug 20.
4
Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase.
Front Mol Biosci. 2019 Jul 9;6:47. doi: 10.3389/fmolb.2019.00047. eCollection 2019.
5
Structure-preserving visualisation of high dimensional single-cell datasets.
Sci Rep. 2019 Jun 20;9(1):8914. doi: 10.1038/s41598-019-45301-0.
6
Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
PLoS Comput Biol. 2019 Feb 19;15(2):e1006801. doi: 10.1371/journal.pcbi.1006801. eCollection 2019 Feb.
7
Allosteric Modulation of Binding Specificity by Alternative Packing of Protein Cores.
J Mol Biol. 2019 Jan 18;431(2):336-350. doi: 10.1016/j.jmb.2018.11.018. Epub 2018 Nov 22.
8
t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations.
J Chem Theory Comput. 2018 Nov 13;14(11):5499-5510. doi: 10.1021/acs.jctc.8b00652. Epub 2018 Oct 9.
9
10
GRadient Adaptive Decomposition (GRAD) Method: Optimized Refinement Along Macrostate Borders in Markov State Models.
J Chem Inf Model. 2017 Nov 27;57(11):2729-2740. doi: 10.1021/acs.jcim.7b00261. Epub 2017 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验