Suppr超能文献

高维单细胞数据集的保形可视化。

Structure-preserving visualisation of high dimensional single-cell datasets.

机构信息

Bering Limited, London, United Kingdom.

Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, UK.

出版信息

Sci Rep. 2019 Jun 20;9(1):8914. doi: 10.1038/s41598-019-45301-0.

Abstract

Single-cell technologies offer an unprecedented opportunity to effectively characterize cellular heterogeneity in health and disease. Nevertheless, visualisation and interpretation of these multi-dimensional datasets remains a challenge. We present a novel framework, ivis, for dimensionality reduction of single-cell expression data. ivis utilizes a siamese neural network architecture that is trained using a novel triplet loss function. Results on simulated and real datasets demonstrate that ivis preserves global data structures in a low-dimensional space, adds new data points to existing embeddings using a parametric mapping function, and scales linearly to hundreds of thousands of cells. ivis is made publicly available through Python and R interfaces on https://github.com/beringresearch/ivis .

摘要

单细胞技术为有效描述健康和疾病中的细胞异质性提供了前所未有的机会。然而,这些多维数据集的可视化和解释仍然是一个挑战。我们提出了一种新的框架 ivis,用于单细胞表达数据的降维。ivis 利用了一种孪生神经网络架构,该架构使用新的三元组损失函数进行训练。在模拟和真实数据集上的结果表明,ivis 在低维空间中保留了全局数据结构,使用参数映射函数将新的数据点添加到现有嵌入中,并在线性扩展到数十万细胞。ivis 通过 Python 和 R 接口在 https://github.com/beringresearch/ivis 上公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4677/6586841/c3c342006bb8/41598_2019_45301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验