Suppr超能文献

使用变分自编码器探索蛋白质构象空间。

Explore Protein Conformational Space With Variational Autoencoder.

作者信息

Tian Hao, Jiang Xi, Trozzi Francesco, Xiao Sian, Larson Eric C, Tao Peng

机构信息

Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Department of Chemistry, Southern Methodist University, Dallas, TX, United States.

Department of Statistical Science, Southern Methodist University, Dallas, TX, United States.

出版信息

Front Mol Biosci. 2021 Nov 12;8:781635. doi: 10.3389/fmolb.2021.781635. eCollection 2021.

Abstract

Molecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations. VAEs are shown to be superior to autoencoders (AEs) through a benchmark study, with low deviation between the training and decoded conformations. Moreover, we show that the learned latent space in the VAE can be used to generate unsampled protein conformations. Additional simulations starting from these generated conformations accelerated the sampling process and explored hidden spaces in the conformational landscape.

摘要

分子动力学(MD)模拟已被积极应用于蛋白质结构和功能的研究中。然而,在蛋白质构象空间中进行广泛采样需要大量的计算资源,并且耗时极长。在本研究中,我们证明了变分自编码器(VAE),一种深度学习模型,可以通过MD模拟用于探索蛋白质的构象空间。通过基准研究表明,VAE优于自编码器(AE),训练构象和解码构象之间的偏差较小。此外,我们表明VAE中学习到的潜在空间可用于生成未采样的蛋白质构象。从这些生成的构象开始进行的额外模拟加速了采样过程,并探索了构象景观中的隐藏空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba5/8633506/90d303a8cbe1/fmolb-08-781635-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验