Suppr超能文献

用于边坡和大坝检查的机器人认知架构。

A Robotic Cognitive Architecture for Slope and Dam Inspections.

机构信息

Electronics Department, Federal Center for Technological Education of Rio de Janeiro, Rio de Janeiro CEP 20271, Brazil.

Electrical Engineering Department, Federal University of Juiz de Fora, Juiz de Fora CEP 36036, Brazil.

出版信息

Sensors (Basel). 2020 Aug 15;20(16):4579. doi: 10.3390/s20164579.

Abstract

Big construction enterprises, such as electrical power generation dams and mining slopes, demand continuous visual inspections. The sizes of these structures and the necessary level of detail in each mission requires a conflicting set of multi-objective goals, such as performance, quality, and safety. It is challenging for human operators, or simple autonomous path-following drones, to process all this information, and thus, it is common that a mission must be repeated several times until it succeeds. This paper deals with this problem by developing a new cognitive architecture based on a collaborative environment between the unmanned aerial vehicles (UAVs) and other agents focusing on optimizing the data gathering, information processing, and decision-making. The proposed architecture breaks the problem into independent units ranging from sensors and actuators up to high-level intelligence processes. It organizes the structures into data and information; each agent may request an individual behavior from the system. To deal with conflicting behaviors, a supervisory agent analyzes all requests and defines the final planning. This architecture enables real-time decision-making with intelligent social behavior among the agents. Thus, it is possible to process and make decisions about the best way to accomplish the mission. To present the methodology, slope inspection scenarios are shown.

摘要

大型建筑企业,如发电大坝和采矿边坡,需要进行持续的目视检查。这些结构的大小和每个任务所需的详细程度都需要一组相互冲突的多目标,如性能、质量和安全。人类操作员或简单的自主路径跟随无人机很难处理所有这些信息,因此,通常必须重复多次任务才能成功。本文通过开发一种新的认知架构来解决这个问题,该架构基于无人机 (UAV) 与其他代理之间的协作环境,重点是优化数据收集、信息处理和决策制定。所提出的架构将问题分解为从传感器和执行器到高级智能过程的独立单元。它将结构组织成数据和信息;每个代理都可以从系统中请求单独的行为。为了处理冲突行为,监督代理分析所有请求并定义最终规划。该架构使代理之间具有实时决策和智能社交行为成为可能。因此,可以处理和做出有关完成任务的最佳方式的决策。为了介绍该方法,展示了边坡检查场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec4/7472623/09d61dbff5d2/sensors-20-04579-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验