Suppr超能文献

利用嗜热链球菌 CRISPR1-Cas9 进行致病性分枝杆菌的高效基因组编辑。

Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9.

机构信息

Department of Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.

Department of Medical Microbiology and Infection Control, Amsterdam Institute of Infection & Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.

出版信息

Tuberculosis (Edinb). 2020 Sep;124:101983. doi: 10.1016/j.tube.2020.101983. Epub 2020 Aug 12.

Abstract

The ability to genetically engineer pathogenic mycobacteria has increased significantly over the last decades due to the generation of new molecular tools. Recently, the application of the Streptococcus pyogenes and the Streptococcus thermophilus CRISPR-Cas9 systems in mycobacteria has enabled gene editing and efficient CRISPR interference-mediated transcriptional regulation. Here, we converted CRISPR interference into an efficient genome editing tool for mycobacteria. We demonstrate that the Streptococcus thermophilus CRISPR1-Cas9 (Sth1Cas9) is functional in Mycobacterium marinum and Mycobacterium tuberculosis, enabling highly efficient and precise DNA breaks and indel formation, without any off-target effects. In addition, with dual sgRNAs this system can be used to generate two indels simultaneously or to create specific deletions. The ability to use the power of the CRISPR-Cas9-mediated gene editing toolbox in M. tuberculosis with a single step will accelerate research into this deadly pathogen.

摘要

过去几十年中,由于新型分子工具的出现,遗传工程致病性分枝杆菌的能力得到了显著提高。最近,链球菌和嗜热链球菌 CRISPR-Cas9 系统在分枝杆菌中的应用使基因编辑和高效的 CRISPR 干扰介导的转录调控成为可能。在这里,我们将 CRISPR 干扰转化为分枝杆菌的高效基因组编辑工具。我们证明,嗜热链球菌 CRISPR1-Cas9(Sth1Cas9)在海分枝杆菌和结核分枝杆菌中具有功能,能够实现高效、精确的 DNA 断裂和插入缺失形成,而没有任何脱靶效应。此外,使用双 sgRNA,该系统可同时用于产生两个插入缺失或创建特定缺失。使用 CRISPR-Cas9 介导的基因编辑工具箱在结核分枝杆菌中进行单步操作的能力将加速对这种致命病原体的研究。

相似文献

1
Efficient genome editing in pathogenic mycobacteria using Streptococcus thermophilus CRISPR1-Cas9.
Tuberculosis (Edinb). 2020 Sep;124:101983. doi: 10.1016/j.tube.2020.101983. Epub 2020 Aug 12.
3
Versatile and robust genome editing with CRISPR1-Cas9.
Genome Res. 2020 Jan;30(1):107-117. doi: 10.1101/gr.255414.119. Epub 2020 Jan 3.
5
Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
Biotechnol Bioeng. 2019 Sep;116(9):2330-2338. doi: 10.1002/bit.27021. Epub 2019 May 30.
6
Optical Control of Genome Editing by Photoactivatable Cas9.
Methods Mol Biol. 2021;2312:225-233. doi: 10.1007/978-1-0716-1441-9_13.
7
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
Cardiovasc Res. 2020 Apr 1;116(5):894-907. doi: 10.1093/cvr/cvz250.
9
Efficient Editing of the Nuclear Reporter Gene in via Expression of a CRISPR-Cas9 Module.
Int J Mol Sci. 2019 Mar 12;20(5):1247. doi: 10.3390/ijms20051247.
10
Target-Specific Precision of CRISPR-Mediated Genome Editing.
Mol Cell. 2019 Feb 21;73(4):699-713.e6. doi: 10.1016/j.molcel.2018.11.031. Epub 2018 Dec 13.

引用本文的文献

1
An unusual genetic switch controls pathogenesis, antibiotic resistance and colony morphology.
bioRxiv. 2025 Jul 28:2025.07.28.667291. doi: 10.1101/2025.07.28.667291.
2
A CRISPR/Cas9-based system using dual-sgRNAs for efficient gene deletion in .
Front Microbiol. 2025 Jul 9;16:1608274. doi: 10.3389/fmicb.2025.1608274. eCollection 2025.
3
The mevalonate pathway of isoprenoid biosynthesis supports metabolic flexibility in .
bioRxiv. 2025 Jul 11:2025.07.11.664281. doi: 10.1101/2025.07.11.664281.
6
CRISPR technology in human diseases.
MedComm (2020). 2024 Jul 29;5(8):e672. doi: 10.1002/mco2.672. eCollection 2024 Aug.
7
CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders.
Cell Commun Signal. 2024 Jun 14;22(1):329. doi: 10.1186/s12964-024-01713-8.
8
Modulating mycobacterial envelope integrity for antibiotic synergy with benzothiazoles.
Life Sci Alliance. 2024 May 14;7(7). doi: 10.26508/lsa.202302509. Print 2024 Jul.
9
Vitamin B uptake across the mycobacterial outer membrane is influenced by membrane permeability in .
Microbiol Spectr. 2024 Jun 4;12(6):e0316823. doi: 10.1128/spectrum.03168-23. Epub 2024 May 9.
10
Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation.
mSphere. 2024 Apr 23;9(4):e0064223. doi: 10.1128/msphere.00642-23. Epub 2024 Mar 21.

本文引用的文献

2
Type VII Secretion Substrates of Pathogenic Mycobacteria Are Processed by a Surface Protease.
mBio. 2019 Oct 29;10(5):e01951-19. doi: 10.1128/mBio.01951-19.
3
CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing.
Nucleic Acids Res. 2019 Jul 2;47(W1):W171-W174. doi: 10.1093/nar/gkz365.
4
ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
mBio. 2018 Dec 11;9(6):e01467-18. doi: 10.1128/mBio.01467-18.
5
A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis.
Biotechnol J. 2018 Sep;13(9):e1700588. doi: 10.1002/biot.201700588. Epub 2018 Aug 6.
6
Advances in the development of molecular genetic tools for Mycobacterium tuberculosis.
J Genet Genomics. 2018 Jun 18. doi: 10.1016/j.jgg.2018.06.003.
10
Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.
Mol Ther. 2016 Mar;24(3):636-44. doi: 10.1038/mt.2015.218. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验