Suppr超能文献

相似文献

1
Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.
Mol Ther. 2016 Mar;24(3):636-44. doi: 10.1038/mt.2015.218. Epub 2015 Dec 14.
2
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
4
Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
J Biol Chem. 2020 May 8;295(19):6509-6517. doi: 10.1074/jbc.RA119.012239. Epub 2020 Apr 1.
5
Versatile and robust genome editing with CRISPR1-Cas9.
Genome Res. 2020 Jan;30(1):107-117. doi: 10.1101/gr.255414.119. Epub 2020 Jan 3.
6
Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
Methods Enzymol. 2014;546:21-45. doi: 10.1016/B978-0-12-801185-0.00002-7.
7
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
8
9
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
10
Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
Mol Cell. 2016 Mar 17;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.

引用本文的文献

1
Design principle of successful genome editing applications using CRISPR-based toolkits.
J Appl Genet. 2025 Jul 1. doi: 10.1007/s13353-025-00979-z.
3
Application of CRISPR/Cas gene editing for infectious disease control in poultry.
Open Life Sci. 2025 May 20;20(1):20251095. doi: 10.1515/biol-2025-1095. eCollection 2025.
4
Current trends in gene therapy to treat inherited disorders of the brain.
Mol Ther. 2025 May 7;33(5):1988-2014. doi: 10.1016/j.ymthe.2025.03.057. Epub 2025 Apr 2.
5
Recent advances in therapeutic gene-editing technologies.
Mol Ther. 2025 Jun 4;33(6):2619-2644. doi: 10.1016/j.ymthe.2025.03.026. Epub 2025 Mar 20.
6
Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9.
Nat Commun. 2025 Feb 28;16(1):2081. doi: 10.1038/s41467-025-57154-5.
8
Harnessing the evolving CRISPR/Cas9 for precision oncology.
J Transl Med. 2024 Aug 8;22(1):749. doi: 10.1186/s12967-024-05570-4.
9
The potential of genome editing to create novel alleles of resistance genes in rice.
Front Genome Ed. 2024 Jun 11;6:1415244. doi: 10.3389/fgeed.2024.1415244. eCollection 2024.

本文引用的文献

1
DNA-binding Specificity Is a Major Determinant of the Activity and Toxicity of Zinc-finger Nucleases.
Mol Ther. 2008 Feb;16(2):352-358. doi: 10.1038/sj.mt.6300357. Epub 2016 Dec 7.
2
Proven and novel strategies for efficient editing of the human genome.
Curr Opin Pharmacol. 2015 Oct;24:105-12. doi: 10.1016/j.coph.2015.08.008. Epub 2015 Sep 4.
3
Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.
Mol Cells. 2015 Jun;38(6):475-81. doi: 10.14348/molcells.2015.0103. Epub 2015 May 19.
4
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.
7
COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites.
Mol Ther Nucleic Acids. 2014 Dec 2;3(12):e214. doi: 10.1038/mtna.2014.64.
8
Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science. 2014 Nov 28;346(6213):1258096. doi: 10.1126/science.1258096.
9
Guide RNA functional modules direct Cas9 activity and orthogonality.
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
10
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验