Suppr超能文献

使用多元回归模型预测地表温度的预测因子范围

Extents of Predictors for Land Surface Temperature Using Multiple Regression Model.

作者信息

Yuvaraj R M

机构信息

UGC-SRF, Department of Geography, Queen Mary's College, Chennai, India.

出版信息

ScientificWorldJournal. 2020 Aug 6;2020:3958589. doi: 10.1155/2020/3958589. eCollection 2020.

Abstract

Land surface temperature (LST) is a key factor in numerous areas such as climate change, land use/land cover in the urban areas, and heat balance and is also a significant participant in the creation of climate models. Landsat data has given numerous possibilities to understand the land processes by means of remote sensing. The present study has been performed to identify the LST of the study region using Landsat 8 OLI/TIRS satellite images for two time periods in order to compare the data. The study also attempted to identify and predict the role and importance of NDVI, NDBI, and the slope of the region on LST. The study concludes that the maximum and minimum temperatures of 40.44 C and 20.78 C were recorded during the November month whereas the maximum and minimum LST for month March has increased to 42.44 C and 24.57 C respectively. The result indicates that LST is inversely proportional to NDVI (-6.369) and slope (-0.077) whereas LST is directly proportional to NDBI (+14.74). Multiple linear regression model has been applied to calculate the extents of NDVI, NDBI, and slope on the LST. It concludes that the increase in vegetation and slope would result in slight decrease in temperature whereas the increase in built-up will result in a huge increase in temperature.

摘要

地表温度(LST)是气候变化、城市地区土地利用/土地覆盖以及热量平衡等众多领域的关键因素,也是气候模型创建中的重要参与者。陆地卫星数据为通过遥感了解陆地过程提供了众多可能性。本研究利用陆地卫星8号OLI/TIRS卫星图像,针对两个时间段识别研究区域的地表温度,以便比较数据。该研究还试图识别和预测归一化植被指数(NDVI)、归一化建筑指数(NDBI)以及该区域坡度对地表温度的作用和重要性。研究得出结论,11月记录到的最高和最低温度分别为40.44摄氏度和20.78摄氏度,而3月的最高和最低地表温度分别升至42.44摄氏度和24.57摄氏度。结果表明,地表温度与NDVI(-6.369)和坡度(-0.077)成反比,而与NDBI(+14.74)成正比。已应用多元线性回归模型来计算NDVI、NDBI和坡度对地表温度的影响程度。研究得出结论,植被和坡度的增加将导致温度略有下降,而建筑用地的增加将导致温度大幅上升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceba/7428829/f162faf2a548/TSWJ2020-3958589.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验