Suppr超能文献

基于深度神经网络的视网膜眼底图像糖尿病性视网膜病变分级中的非均匀标签平滑。

Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks.

机构信息

École de technologie supérieure de Montréal, Montreal, Quebec, Canada.

University of Bournemouth, Poole, UK.

出版信息

Transl Vis Sci Technol. 2020 Jun 30;9(2):34. doi: 10.1167/tvst.9.2.34. eCollection 2020 Jun.

Abstract

PURPOSE

Introducing a new technique to improve deep learning (DL) models designed for automatic grading of diabetic retinopathy (DR) from retinal fundus images by enhancing predictions' consistency.

METHODS

A convolutional neural network (CNN) was optimized in three different manners to predict DR grade from eye fundus images. The optimization criteria were (1) the standard cross-entropy (CE) loss; (2) CE supplemented with label smoothing (LS), a regularization approach widely employed in computer vision tasks; and (3) our proposed non-uniform label smoothing (N-ULS), a modification of LS that models the underlying structure of expert annotations.

RESULTS

Performance was measured in terms of quadratic-weighted κ score (quad-κ) and average area under the receiver operating curve (AUROC), as well as with suitable metrics for analyzing diagnostic consistency, like weighted precision, recall, and F1 score, or Matthews correlation coefficient. While LS generally harmed the performance of the CNN, N-ULS statistically significantly improved performance with respect to CE in terms quad-κ score (73.17 vs. 77.69, < 0.025), without any performance decrease in average AUROC. N-ULS achieved this while simultaneously increasing performance for all other analyzed metrics.

CONCLUSIONS

For extending standard modeling approaches from DR detection to the more complex task of DR grading, it is essential to consider the underlying structure of expert annotations. The approach introduced in this article can be easily implemented in conjunction with deep neural networks to increase their consistency without sacrificing per-class performance.

TRANSLATIONAL RELEVANCE

A straightforward modification of current standard training practices of CNNs can substantially improve consistency in DR grading, better modeling expert annotations and human variability.

摘要

目的

引入一种新的技术,通过增强预测的一致性,来改进用于自动分级糖尿病视网膜病变(DR)的深度学习(DL)模型。

方法

以三种不同的方式优化卷积神经网络(CNN),以便从眼底图像预测 DR 等级。优化标准为(1)标准交叉熵(CE)损失;(2)CE 补充标签平滑(LS),这是计算机视觉任务中广泛使用的一种正则化方法;(3)我们提出的非均匀标签平滑(N-ULS),这是 LS 的一种改进,用于模拟专家注释的基础结构。

结果

使用二次加权κ评分(quad-κ)和平均接收者操作特征曲线下面积(AUROC)来衡量性能,以及使用适当的指标来分析诊断一致性,如加权精度、召回率和 F1 评分,或马修斯相关系数。虽然 LS 通常会损害 CNN 的性能,但 N-ULS 在 quad-κ 评分方面与 CE 相比在统计学上显著提高了性能(73.17 对 77.69,<0.025),而平均 AUROC 没有任何性能下降。N-ULS 实现了这一目标,同时提高了所有其他分析指标的性能。

结论

为了将标准的建模方法从 DR 检测扩展到更复杂的 DR 分级任务,必须考虑专家注释的基础结构。本文介绍的方法可以与深度神经网络结合使用,在不牺牲每类性能的情况下,提高一致性。

翻译

医学论文翻译助手

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验