文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能分析在小鼠模型中胰岛移植的磁粒子成像

Artificial Intelligence Analysis of Magnetic Particle Imaging for Islet Transplantation in a Mouse Model.

机构信息

Precision Health Program, Michigan State University, 766 Service Road, Rm. 2020, East Lansing, MI, 48823, USA.

Lyman Briggs College, Michigan State University, East Lansing, MI, USA.

出版信息

Mol Imaging Biol. 2021 Feb;23(1):18-29. doi: 10.1007/s11307-020-01533-5. Epub 2020 Aug 24.


DOI:10.1007/s11307-020-01533-5
PMID:32833112
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7785569/
Abstract

PURPOSE: Current approaches to quantification of magnetic particle imaging (MPI) for cell-based therapy are thwarted by the lack of reliable, standardized methods of segmenting the signal from background in images. This calls for the development of artificial intelligence (AI) systems for MPI analysis. PROCEDURES: We utilize a canonical algorithm in the domain of unsupervised machine learning, known as K-means++, to segment the regions of interest (ROI) of images and perform iron quantification analysis using a standard curve model. We generated in vitro, in vivo, and ex vivo data using islets and mouse models and applied the AI algorithm to gain insight into segmentation and iron prediction on these MPI data. In vitro models included imaging the VivoTrax-labeled islets in varying numbers. In vivo mouse models were generated through transplantation of increasing numbers of the labeled islets under the kidney capsule of mice. Ex vivo data were obtained from the MPI images of excised kidney grafts. RESULTS: The K-means++ algorithms segmented the ROI of in vitro phantoms with minimal noise. A linear correlation between the islet numbers and the increasing prediction of total iron value (TIV) in the islets was observed. Segmentation results of the ROI of the in vivo MPI scans showed that with increasing number of transplanted islets, the signal intensity increased with linear trend. Upon segmenting the ROI of ex vivo data, a linear trend was observed in which increasing intensity of the ROI yielded increasing TIV of the islets. Through statistical evaluation of the algorithm performance via intraclass correlation coefficient validation, we observed excellent performance of K-means++-based model on segmentation and quantification analysis of MPI data. CONCLUSIONS: We have demonstrated the ability of the K-means++-based model to provide a standardized method of segmentation and quantification of MPI scans in an islet transplantation mouse model.

摘要

目的:目前用于细胞治疗的磁粒子成像(MPI)定量的方法受到缺乏可靠、标准化的图像背景信号分割方法的阻碍。这就需要开发用于 MPI 分析的人工智能(AI)系统。

过程:我们利用无监督机器学习领域中的一种标准算法,即 K-means++,对图像的感兴趣区域(ROI)进行分割,并使用标准曲线模型进行铁定量分析。我们使用胰岛和小鼠模型生成了体外、体内和离体数据,并应用 AI 算法深入了解这些 MPI 数据的分割和铁预测。体外模型包括以不同数量成像 VivoTrax 标记的胰岛。体内小鼠模型通过在小鼠肾包膜下移植越来越多标记的胰岛来生成。离体数据来自切除的肾移植 MPI 图像。

结果:K-means++算法最小化噪声地分割了体外模型的 ROI。观察到胰岛数量与胰岛总铁值(TIV)的递增预测之间存在线性相关性。对体内 MPI 扫描的 ROI 进行分割的结果表明,随着移植胰岛数量的增加,信号强度呈线性趋势增加。对离体数据的 ROI 进行分割后,观察到线性趋势,即 ROI 强度增加导致胰岛的 TIV 增加。通过内类相关系数验证对算法性能的统计评估,我们观察到 K-means++ 基于模型的算法在胰岛移植小鼠模型的 MPI 扫描分割和定量分析方面具有出色的性能。

结论:我们已经证明了基于 K-means++的模型能够为胰岛移植小鼠模型中的 MPI 扫描提供标准化的分割和定量方法。

相似文献

[1]
Artificial Intelligence Analysis of Magnetic Particle Imaging for Islet Transplantation in a Mouse Model.

Mol Imaging Biol. 2021-2

[2]
Magnetic Particle Imaging of Transplanted Human Islets Using a Machine Learning Algorithm.

Methods Mol Biol. 2023

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[4]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[5]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation.

JMIR Med Inform. 2025-6-30

[9]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

引用本文的文献

[1]
Principles and applications of magnetic nanomaterials in magnetically guided bioimaging.

Mater Today Phys. 2023-3

[2]
Brown Adipose Tissue as a Unique Niche for Islet Organoid Transplantation: Insights From In Vivo Imaging.

Transplant Direct. 2024-6-13

[3]
Advances in Vascular Diagnostics using Magnetic Particle Imaging (MPI) for Blood Circulation Assessment.

Adv Healthc Mater. 2024-9

[4]
Magnetic Particle Imaging Reveals that Iron-Labeled Extracellular Vesicles Accumulate in Brains of Mice with Metastases.

ACS Appl Mater Interfaces. 2024-6-19

[5]
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

J Magn Reson Imaging. 2025-1

[6]
Progress in magnetic particle imaging signal and iron quantification methods - application to long circulating SPIONs.

Nanoscale Adv. 2023-8-18

[7]
Deep learning-enabled quantification of simultaneous PET/MRI for cell transplantation monitoring.

iScience. 2023-6-9

[8]
Magnetic Particle Imaging of Transplanted Human Islets Using a Machine Learning Algorithm.

Methods Mol Biol. 2023

[9]
Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy.

Eur J Nucl Med Mol Imaging. 2023-4

[10]
Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances.

Pharmaceutics. 2022-3-15

本文引用的文献

[1]
miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model.

Sci Rep. 2020-3-24

[2]
Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging.

Sci Rep. 2020-2-5

[3]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

[4]
On the relationship of machine learning with causal inference.

Eur J Epidemiol. 2020-2

[5]
Magnetic Particle Imaging: Current Applications in Biomedical Research.

J Magn Reson Imaging. 2020-6

[6]
Magnetic Nanoparticles in Macrophages and Cancer Cells Exhibit Different Signal Behavior on Magnetic Particle Imaging.

J Nanosci Nanotechnol. 2019-11-1

[7]
Medical Image Analysis using Convolutional Neural Networks: A Review.

J Med Syst. 2018-10-8

[8]
Artificial intelligence in radiology.

Nat Rev Cancer. 2018-8

[9]
Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models.

Quant Imaging Med Surg. 2018-3

[10]
Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

J Am Coll Radiol. 2018-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索