文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁粒子成像显示和定量检测磁性纳米颗粒的细胞摄取。

Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging.

机构信息

Physikalisch-Technische Bundesanstalt, Berlin, Germany.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany.

出版信息

Sci Rep. 2020 Feb 5;10(1):1922. doi: 10.1038/s41598-020-58853-3.


DOI:10.1038/s41598-020-58853-3
PMID:32024926
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7002802/
Abstract

Magnetic particle imaging (MPI) is a non-invasive, non-ionizing imaging technique for the visualization and quantification of magnetic nanoparticles (MNPs). The technique is especially suitable for cell imaging as it offers zero background contribution from the surrounding tissue, high sensitivity, and good spatial and temporal resolutions. Previous studies have demonstrated that the dynamic magnetic behaviour of MNPs changes during cellular binding and internalization. In this study, we demonstrate how this information is encoded in the MPI imaging signal. Through MPI imaging we are able to discriminate between free and cell-bound MNPs in reconstructed images. This technique was used to image and quantify the changes that occur in-vitro when free MNPs come into contact with cells and undergo cellular-uptake over time. The quantitative MPI results were verified by colorimetric measurements of the iron content. The results showed a mean relative difference between the MPI results and the reference method of 23.8% for the quantification of cell-bound MNPs. With this technique, the uptake of MNPs in cells can be imaged and quantified directly from the first MNP cell contact, providing information on the dynamics of cellular uptake.

摘要

磁粒子成像(MPI)是一种用于可视化和量化磁性纳米粒子(MNPs)的非侵入性、非电离成像技术。该技术特别适用于细胞成像,因为它提供了来自周围组织的零背景贡献、高灵敏度以及良好的空间和时间分辨率。先前的研究表明,MNPs 的动态磁行为在细胞结合和内化过程中发生变化。在本研究中,我们展示了如何在 MPI 成像信号中对这些信息进行编码。通过 MPI 成像,我们能够在重建图像中区分游离和细胞结合的 MNPs。这项技术用于成像和量化体外实验中游离 MNPs 与细胞接触并随时间发生细胞摄取时的变化。通过比色法测量铁含量对定量 MPI 结果进行了验证。结果表明,MPI 结果与参考方法定量细胞结合 MNPs 的平均相对差异为 23.8%。通过这项技术,可以直接从第一个 MNP 与细胞接触开始对细胞内的 MNPs 摄取进行成像和定量,提供有关细胞摄取动力学的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/5fc423d54fbb/41598_2020_58853_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/f186c8e9ba72/41598_2020_58853_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/d63928a50f05/41598_2020_58853_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/cae61aa5dba2/41598_2020_58853_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/5fc423d54fbb/41598_2020_58853_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/f186c8e9ba72/41598_2020_58853_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/d63928a50f05/41598_2020_58853_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/cae61aa5dba2/41598_2020_58853_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f373/7002802/5fc423d54fbb/41598_2020_58853_Fig4_HTML.jpg

相似文献

[1]
Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging.

Sci Rep. 2020-2-5

[2]
Cell Tracking by Magnetic Particle Imaging: Methodology for Labeling THP-1 Monocytes with Magnetic Nanoparticles for Cellular Imaging.

Cells. 2022-9-16

[3]
Magnetic Nanoparticles in Macrophages and Cancer Cells Exhibit Different Signal Behavior on Magnetic Particle Imaging.

J Nanosci Nanotechnol. 2019-11-1

[4]
Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance.

Biomed Tech (Berl). 2013-12

[5]
Bimodal intravascular volumetric imaging combining OCT and MPI.

Med Phys. 2019-2-14

[6]
Counting cells in motion by quantitative real-time magnetic particle imaging.

Sci Rep. 2024-2-21

[7]
Experimental and simulation studies on the behavior of signal harmonics in magnetic particle imaging.

Radiol Phys Technol. 2013-7

[8]
Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications.

Biomed Tech (Berl). 2015-10

[9]
Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging.

Mol Imaging Biol. 2017-6

[10]
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.

Med Phys. 2011-3

引用本文的文献

[1]
The Role of Glycocalyx Diversity and Thickness for Nanoparticle Internalization in M1-/M2-like Macrophages.

Nano Lett. 2024-12-11

[2]
Rapid cellular uptake of citrate-coated iron oxide nanoparticles unaffected by cell-surface glycosaminoglycans.

Nanoscale Adv. 2024-6-13

[3]
Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.

Nanoscale Adv. 2023-10-4

[4]
In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging.

Eur Radiol Exp. 2023-8-15

[5]
3D modeling of in vivo MRI-guided nano-photothermal therapy mediated by magneto-plasmonic nanohybrids.

Biomed Eng Online. 2023-8-1

[6]
Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers.

Nanoscale Adv. 2023-3-15

[7]
Dual Magnetic Particle Imaging and Akaluc Bioluminescence Imaging for Tracking Cancer Cell Metastasis.

Tomography. 2023-1-25

[8]
Cell Tracking by Magnetic Particle Imaging: Methodology for Labeling THP-1 Monocytes with Magnetic Nanoparticles for Cellular Imaging.

Cells. 2022-9-16

[9]
Kinetics of nanoparticle uptake into and distribution in human cells.

Nanoscale Adv. 2021-3-18

[10]
Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry.

Materials (Basel). 2022-3-14

本文引用的文献

[1]
Correction of linear system drifts in magnetic particle imaging.

Phys Med Biol. 2019-6-20

[2]
Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging.

Nanoscale. 2019-4-23

[3]
Very small superparamagnetic iron oxide nanoparticles: Long-term fate and metabolic processing in atherosclerotic mice.

Nanomedicine. 2018-9-1

[4]
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.

Theranostics. 2018-6-8

[5]
Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging.

Phys Med Biol. 2018-7-2

[6]
Joint Reconstruction of Tracer Distribution and Background in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2018-5

[7]
Tomographic magnetic particle imaging of cancer targeted nanoparticles.

Nanoscale. 2017-12-7

[8]
Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.

Sci Rep. 2017-7-31

[9]
Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection.

Nano Lett. 2017-2-21

[10]
Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics.

PLoS One. 2016-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索