Suppr超能文献

基于马尔可夫重采样的 SVM 提升:理论与算法。

SVM-Boosting based on Markov resampling: Theory and algorithm.

机构信息

Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, China.

Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

出版信息

Neural Netw. 2020 Nov;131:276-290. doi: 10.1016/j.neunet.2020.07.036. Epub 2020 Aug 11.

Abstract

In this article we introduce the idea of Markov resampling for Boosting methods. We first prove that Boosting algorithm with general convex loss function based on uniformly ergodic Markov chain (u.e.M.c.) examples is consistent and establish its fast convergence rate. We apply Boosting algorithm based on Markov resampling to Support Vector Machine (SVM), and introduce two new resampling-based Boosting algorithms: SVM-Boosting based on Markov resampling (SVM-BM) and improved SVM-Boosting based on Markov resampling (ISVM-BM). In contrast with SVM-BM, ISVM-BM uses the support vectors to calculate the weights of base classifiers. The numerical studies based on benchmark datasets show that the proposed two resampling-based SVM Boosting algorithms for linear base classifiers have smaller misclassification rates, less total time of sampling and training compared to three classical AdaBoost algorithms: Gentle AdaBoost, Real AdaBoost, Modest AdaBoost. In addition, we compare the proposed SVM-BM algorithm with the widely used and efficient gradient Boosting algorithm-XGBoost (eXtreme Gradient Boosting), SVM-AdaBoost and present some useful discussions on the technical parameters.

摘要

在本文中,我们介绍了马尔可夫重采样在 Boosting 方法中的应用。我们首先证明了基于一致遍历马尔可夫链 (u.e.M.c.) 示例的具有一般凸损失函数的 Boosting 算法是一致的,并建立了其快速收敛速度。我们将基于马尔可夫重采样的 Boosting 算法应用于支持向量机 (SVM),并引入了两种新的基于重采样的 Boosting 算法:基于马尔可夫重采样的 SVM-Boosting (SVM-BM) 和改进的基于马尔可夫重采样的 SVM-Boosting (ISVM-BM)。与 SVM-BM 相比,ISVM-BM 使用支持向量来计算基分类器的权重。基于基准数据集的数值研究表明,所提出的两种基于重采样的线性基分类器的 SVM Boosting 算法具有更小的误分类率、更少的总采样和训练时间,与三种经典的 AdaBoost 算法:Gentle AdaBoost、Real AdaBoost、Modest AdaBoost 相比。此外,我们还将提出的 SVM-BM 算法与广泛使用且高效的梯度提升算法-XGBoost(极端梯度提升)、SVM-AdaBoost 进行了比较,并对技术参数进行了一些有益的讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验