Suppr超能文献

基于马尔可夫抽样的 Fisher 线性判别推广性能。

Generalization performance of Fisher linear discriminant based on Markov sampling.

出版信息

IEEE Trans Neural Netw Learn Syst. 2013 Feb;24(2):288-300. doi: 10.1109/TNNLS.2012.2230406.

Abstract

Fisher linear discriminant (FLD) is a well-known method for dimensionality reduction and classification that projects high-dimensional data onto a low-dimensional space where the data achieves maximum class separability. The previous works describing the generalization ability of FLD have usually been based on the assumption of independent and identically distributed (i.i.d.) samples. In this paper, we go far beyond this classical framework by studying the generalization ability of FLD based on Markov sampling. We first establish the bounds on the generalization performance of FLD based on uniformly ergodic Markov chain (u.e.M.c.) samples, and prove that FLD based on u.e.M.c. samples is consistent. By following the enlightening idea from Markov chain Monto Carlo methods, we also introduce a Markov sampling algorithm for FLD to generate u.e.M.c. samples from a given data of finite size. Through simulation studies and numerical studies on benchmark repository using FLD, we find that FLD based on u.e.M.c. samples generated by Markov sampling can provide smaller misclassification rates compared to i.i.d. samples.

摘要

Fisher 线性判别(FLD)是一种著名的降维和分类方法,它将高维数据投影到低维空间,在该空间中数据实现最大的类可分离性。描述 FLD 泛化能力的先前工作通常基于独立同分布(i.i.d.)样本的假设。在本文中,我们通过基于马尔可夫抽样研究 FLD 的泛化能力,大大超越了这个经典框架。我们首先基于一致遍历马尔可夫链(u.e.M.c.)样本建立了 FLD 泛化性能的界,并证明了基于 u.e.M.c.样本的 FLD 是一致的。通过借鉴马尔可夫链蒙特卡罗方法的启发式思想,我们还为 FLD 引入了一种马尔可夫抽样算法,以便从给定的有限大小数据中生成 u.e.M.c.样本。通过对使用 FLD 的基准库进行模拟研究和数值研究,我们发现基于由马尔可夫抽样生成的 u.e.M.c.样本的 FLD 可以提供比 i.i.d.样本更小的错误分类率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验