School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
School of Science and Technology, Middlesex University, London NW4 4BT, UK.
Sensors (Basel). 2017 Feb 28;17(3):478. doi: 10.3390/s17030478.
The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.
惯性传感器在智能手机和其他可穿戴设备中的广泛安装,为通过分析步态模式来识别人员提供了一个有价值的机会,无论是在合作还是非合作的情况下。然而,从智能手机等随意佩戴的可穿戴设备中收集到的嘈杂且复杂的数据序列中,可靠地提取出用于步态识别的有区别的特征仍然是一项具有挑战性的任务。为了应对这个问题,我们提出了一种新的基于图像的步态识别方法,使用卷积神经网络(CNN),而无需手动提取有区别的特征。CNN 的输入图像是直接从惯性传感器数据序列编码得到的,称为角度嵌入步态动态图像(AE-GDI)。AE-GDI 是步态动力学的一种新的二维表示,对旋转和平移具有不变性。使用两个数据集评估了所提出的方法在步态认证和步态标记中的性能:(1)麦吉尔大学数据集,是在真实条件下采集的;(2)大阪大学数据集,其中包含最多的受试者。实验结果表明,所提出的方法在识别精度上优于现有方法,并且为通过步态模式对大量受试者进行身份识别提供了有效的参数化解决方案。