Mengele Alexander K, Müller Carolin, Nauroozi Djawed, Kupfer Stephan, Dietzek Benjamin, Rau Sven
Institute of Inorganic Chemistry I, Materials and Catalysis, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
Institute of Physical Chemistry, Friedrich-Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
Inorg Chem. 2020 Sep 8;59(17):12097-12110. doi: 10.1021/acs.inorgchem.0c01022. Epub 2020 Aug 26.
Bi(benz)imidazoles () acting as N,N-chelates in ruthenium complexes represent a unique class of ligands. They do not harbor metal-to-ligand charge-transfer (MLCT) excited states in ruthenium polypyridyl complexes upon visible-light excitation provided that no substitution is introduced at the N atoms. Hence, they can be used to steer light-driven electron-transfer pathways in a desired direction. Nonetheless, the free N atoms are susceptible to protonation and, hence, introduce highly pH-dependent properties into the complexes. Previous results for ruthenium complexes containing ligands with alkylic or arylic -substitution indicated that, although pH insensitivity was accomplished, unexpected losses of spectator ligand features incurred simultaneously. Here, we report the synthesis and photophysical characterization of a series of differently -alkylated ligands along with their corresponding (tbbpy)Ru() complexes (tbbpy = 4,4'--butyl-2,2'-bipyridine). The data reveal that elongation of a rigid ethylene bridge by just one methylene group drastically increases the emission quantum yield, emission lifetime, and photostability of the resultant complexes. Quantum-chemical calculations support these findings and allow us to rationalize the observed effects based on the energetic positions of the respective excited states. We suggest that ,'-propylene-protected 1,1'-2,2'-biimidazole () is a suitable spectator ligand because it stabilizes sufficiently long-lived MLCT excited states exclusively localized at auxiliary bipyridine ligands. This ligand represents, therefore, a vital building block for next-generation photochemical molecular devices in artificial photosynthesis.
在钌配合物中作为N,N螯合物的联(苯并)咪唑( )代表了一类独特的配体。只要在N原子上不引入取代基,它们在可见光激发下的钌多吡啶配合物中就不会存在金属到配体的电荷转移(MLCT)激发态。因此,它们可用于将光驱动的电子转移途径引导至所需方向。然而,游离的N原子易受质子化影响,因此会给配合物引入高度依赖pH的性质。先前关于含有具有烷基或芳基 - 取代的配体的钌配合物的结果表明,尽管实现了pH不敏感性,但同时会意外丧失旁观配体的特性。在这里,我们报告了一系列不同 - 烷基化的 配体及其相应的(tbbpy)Ru( )配合物(tbbpy = 4,4' - 叔丁基 - 2,2'-联吡啶)的合成和光物理表征。数据表明,仅通过一个亚甲基延长刚性乙烯桥会显著提高所得配合物的发射量子产率、发射寿命和光稳定性。量子化学计算支持这些发现,并使我们能够根据各自激发态的能量位置合理解释观察到的效应。我们认为, ,'-丙烯保护的1,1'-2,2'-联咪唑( )是一种合适的旁观配体,因为它能稳定仅局限于辅助联吡啶配体的足够长寿命的MLCT激发态。因此,这种配体是人工光合作用中下一代光化学分子器件的重要组成部分。