Wang Yuyu, Cao Dongxu, Zhang Kailiang, Kang Wenpei, Wang Xiaotong, Ma Ping, Wan Yufen, Cao Dongwei, Sun Daofeng
College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.
Nanoscale. 2020 Sep 14;12(34):17915-17924. doi: 10.1039/d0nr04665e. Epub 2020 Aug 26.
Recently, anode materials with synergistic sodium storage mechanisms of conversion combined with alloying reactions for sodium ion batteries (SIBs) have received widespread attention due to their high theoretical capacities. In this work, through reacting with an appropriate concentration of Sb ions and a simple carbonization process, hollow ZnSe/SbSe microspheres encapsulated in nitrogen-doped carbon (ZnSe/SbSe@NC) are progressively synthesized based on a cation-exchange reaction, using polydopamine-coated ZnSe (ZnSe@PDA) microspheres as the precursor. Benefiting from the synergistic effects between the unique structure and composition characteristics, when serving as an anode material for SIBs, they result in higher sodium diffusion coefficients (8.7 × 10-3.98 × 10 cm s) and ultrafast pseudocapacitive sodium storage capability. Compared with ZnSe@NC and SbSe@NCs exhibit, ZnSe/SbSe@NC exhibits more stable capacity (438 mA h g at a current of 0.5 A g after 120 cycles) and superior rate performance (316 mA h g at 10.0 A g). Our work provides a convenient method to construct high performance anodes with tunable composition and structure for energy storage.
近年来,具有转化与合金化反应协同储钠机制的钠离子电池(SIBs)负极材料因其高理论容量而受到广泛关注。在这项工作中,以聚多巴胺包覆的ZnSe(ZnSe@PDA)微球为前驱体,通过与适当浓度的Sb离子反应并经过简单的碳化过程,基于阳离子交换反应逐步合成了包裹在氮掺杂碳中的中空ZnSe/SbSe微球(ZnSe/SbSe@NC)。得益于独特结构与组成特性之间的协同效应,当用作SIBs的负极材料时,它们具有更高的钠扩散系数(8.7×10 -3.98×10 cm s)和超快的赝电容储钠能力。与ZnSe@NC和SbSe@NC相比,ZnSe/SbSe@NC表现出更稳定的容量(在0.5 A g的电流下循环120次后为438 mA h g)和优异的倍率性能(在10.0 A g时为316 mA h g)。我们的工作提供了一种构建具有可调组成和结构的高性能储能负极的简便方法。