Roberts B M, Ginges J S M
School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia.
Phys Rev Lett. 2020 Aug 7;125(6):063002. doi: 10.1103/PhysRevLett.125.063002.
We report a fourfold improvement in the determination of nuclear magnetic moments for neutron-deficient francium isotopes 207-213, reducing the uncertainties from 2% for most isotopes to 0.5%. These are found by comparing our high-precision calculations of hyperfine structure constants for the ground states with experimental values. In particular, we show the importance of a careful modeling of the Bohr-Weisskopf effect, which arises due to the finite nuclear magnetization distribution. This effect is particularly large in Fr and until now has not been modeled with sufficiently high accuracy. An improved understanding of the nuclear magnetic moments and Bohr-Weisskopf effect are crucial for benchmarking the atomic theory required in precision tests of the standard model, in particular atomic parity violation studies, that are underway in francium.
我们报告了在确定缺中子钫同位素207 - 213的核磁矩方面有四倍的改进,将大多数同位素的不确定性从2%降低到了0.5%。这些结果是通过将我们对基态超精细结构常数的高精度计算与实验值进行比较而得到的。特别地,我们展示了对玻尔 - 魏斯科普夫效应进行仔细建模的重要性,该效应是由有限的核磁化分布引起的。这种效应在钫中特别大,到目前为止尚未以足够高的精度进行建模。对核磁矩和玻尔 - 魏斯科普夫效应的更好理解对于校准标准模型精密测试所需的原子理论至关重要,特别是正在钫中进行的原子宇称破坏研究。