Shiklomanov Alexey N, Bond-Lamberty Ben, Atkins Jeff W, Gough Christopher M
NASA Goddard Space Flight Center, Greenbelt, MD, USA.
Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA.
Glob Chang Biol. 2020 Nov;26(11):6080-6096. doi: 10.1111/gcb.15164. Epub 2020 Aug 26.
Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi-decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand-replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub-model-parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under-predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant-soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED-2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models.
几十年间,次生林的再生塑造了群落演替和生物地球化学过程,包括在大湖上游地区。植被模型体现了我们对森林功能的理解,而模型能否再现数十年的演替模式则表明我们预测森林对未来变化反应的能力。我们测试了一个植被模型在林分更替干扰后100年的森林再生过程中模拟碳循环和群落组成的能力,提出以下问题:(a) 对于准确模拟中西部上游森林演替而言,哪些过程和参数最为重要?(b) 模型结构与参数值对这些预测的相对重要性如何?我们运行了生态系统人口统计学模型v2.2的多个集合,这些集合对与光竞争重要的过程有不同的表示。我们比较了结构和参数不确定性的大小,并评估了哪些子模型 - 参数组合能最好地再现观测到的碳通量和群落组成。平均而言,我们的模拟低估了100年后观测到的净初级生产力(NPP)和叶面积指数(LAI),并预测单一植物功能类型(PFT)将完全占主导地位。在4000次模拟中,只有9次落在NPP和LAI的观测范围内,但这些模拟预测早期硬木或松树PFT会出现不切实际的完全主导地位。另外一组7次模拟在生态上看似合理,但预测的NPP和LAI低于观测值。参数不确定性很大;NPP和LAI在其平均值的约0%至>200%范围内变化,任何PFT都可能成为主导。对预测NPP不确定性贡献最大的两个参数是植物 - 土壤水分传导率和生长呼吸,这两个都是不可观测的经验系数。我们得出结论:(a) 参数不确定性比结构不确定性更重要,至少对于中西部上游森林中的ED - 2.2模型来说是这样;(b) 对于人口统计学植被模型而言,在没有物理上不现实的参数的情况下准确模拟生产力和植物群落组成仍然具有挑战性。