Del-Canto Irene, Gómez-Cid Lidia, Hernández-Romero Ismael, Guillem María S, Fernández-Santos María Eugenia, Atienza Felipe, Such Luis, Fernández-Avilés Francisco, Chorro Francisco J, Climent Andreu M
INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.
Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain.
Front Physiol. 2020 Aug 4;11:922. doi: 10.3389/fphys.2020.00922. eCollection 2020.
Mechanical stretch increases Na inflow into myocytes, related to mechanisms including stretch-activated channels or Na/H exchanger activation, involving Ca increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of current and Ca overload.
This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine.
Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action.
HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm, < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, < 0.01) and maintaining activation complexity-both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, < 0.01).
Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.
机械牵张会增加心肌细胞内钠离子流入,其机制包括牵张激活通道或钠/氢交换体激活,涉及钙离子增加,进而导致电生理特性改变,有利于心律失常的诱发。雷诺嗪是一种抗心绞痛药物,已证实对与电流增强和钙超载相关的心律失常具有有益作用。
本研究旨在探讨机械牵张对心房细胞单层激活模式的影响及其对雷诺嗪的药理反应。
将融合的HL-1细胞培养在硅胶膜板中,并拉伸至原始长度的110%。使用光学标测分析颤动的特征(主导频率、规则性指数、相位奇点密度、转子曲折度和转子曲率),以研究在对照条件和雷诺嗪作用下对牵张的机电反应。
在对照条件下,HL-1细胞牵张增加了颤动主导频率(3.65±0.69对4.35±0.74Hz,P<0.01)和激活复杂性(1.97±0.45对2.66±0.58个奇点/厘米,P<0.01)。这些效应与牵张诱导的影响折返模式的变化有关,包括转子曲折度降低(0.72±0.12对0.62±0.12厘米/秒,P<0.001)和波前曲率增加(4.90±0.42对5.68±0.40弧度/厘米,P<0.001)。雷诺嗪减少了牵张诱导的效应,减弱了激活速率增加(12.8%对19.7%,P<0.01),并维持了激活复杂性——这两个参数在牵张期间均低于对照条件。此外,在基线条件下,雷诺嗪减慢并使激活模式规则化(3.04±0.61对3.65±0.69Hz,P<0.01)。
雷诺嗪可减轻心房肌细胞单层中机械牵张诱导的激活模式改变。