Fürer Lukas, Schenk Nathalie, Roth Volker, Steppan Martin, Schmeck Klaus, Zimmermann Ronan
Clinic for Children and Adolescents, University Psychiatric Clinic, Basel, Switzerland.
Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland.
Front Psychol. 2020 Jul 28;11:1726. doi: 10.3389/fpsyg.2020.01726. eCollection 2020.
Speaker diarization is the practice of determining who speaks when in audio recordings. Psychotherapy research often relies on labor intensive manual diarization. Unsupervised methods are available but yield higher error rates. We present a method for supervised speaker diarization based on random forests. It can be considered a compromise between commonly used labor-intensive manual coding and fully automated procedures. The method is validated using the EMRAI synthetic speech corpus and is made publicly available. It yields low diarization error rates (M: 5.61%, STD: 2.19). Supervised speaker diarization is a promising method for psychotherapy research and similar fields.
说话人分割是指在音频记录中确定谁在何时说话的实践。心理治疗研究通常依赖于劳动强度大的人工分割。虽然有非监督方法可用,但错误率较高。我们提出了一种基于随机森林的监督说话人分割方法。它可以被视为常用的劳动密集型手动编码和全自动程序之间的一种折衷。该方法使用EMRAI合成语音语料库进行了验证,并已公开提供。它产生的分割错误率较低(平均值:5.61%,标准差:2.19)。监督说话人分割是心理治疗研究和类似领域一种很有前景的方法。