Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
J Physiol. 2020 Dec;598(23):5391-5409. doi: 10.1113/JP280119. Epub 2020 Sep 17.
Temporal lobe epilepsy is a complex neurological disease caused by imbalance of excitation and inhibition in the brain. Growing literature implicates altered Ca signalling in many aspects of epilepsy but the diversity of Ca channels that regulate this syndrome are not well-understood. Here, we report that mice lacking the store-operated Ca channel, Orai1, in the brain show markedly stronger seizures in response to the chemoconvulsants, kainic acid and pilocarpine. Electrophysiological analysis reveals that selective deletion of Orai1 channels in inhibitory neurons disables chemoconvulsant-induced excitation of GABAergic neurons in the CA1 hippocampus. Likewise, deletion of Orai1 in GABAergic neurons abrogates the chemoconvulsant-induced burst of spontaneous inhibitory postsynaptic currents (sIPSCs) on CA1 pyramidal neurons in the hippocampus. This loss of chemoconvulsant inhibition likely aggravates status epilepticus in Orai1 KO mice. These results identify Orai1 channels as regulators of hippocampal interneuron excitability and seizures.
Store-operated Orai1 channels are a major mechanism for Ca entry in many cells and mediate numerous functions including gene expression, cytokine production and gliotransmitter release. Orai1 is expressed in many regions of the mammalian brain; however, its role in regulating neuronal excitability, synaptic function and brain disorders has only now begun to be investigated. To investigate a potential role of Orai1 channels in status epilepticus induced by chemoconvulsants, we examined acute seizures evoked by intraperitoneal injections of kainic acid (KA) and pilocarpine in mice with a conditional deletion of Orai1 (or its activator STIM1) in the brain. Brain-specific Orai1 and STIM1 knockout (KO) mice exhibited significantly stronger seizures (P = 0.00003 and P < 0.00001), and higher chemoconvulsant-induced mortality (P = 0.02) compared with wildtype (WT) littermates. Electrophysiological recordings in hippocampal brain slices revealed that KA stimulated the activity of inhibitory interneurons in the CA1 hippocampus (P = 0.04) which failed to occur in Orai1 KO mice. Further, KA and pilocarpine increased the frequency of spontaneous IPSCs in CA1 pyramidal neurons >twofold (KA: P = 0.04; pilocarpine: P = 0.0002) which was abolished in Orai1 KO mice. Mice with selective deletion of Orai1 in GABAergic neurons alone also showed stronger seizures to KA (P = 0.001) and pilocarpine (P < 0.00001) and loss of chemoconvulsant-induced increases in sIPSC responses compared with WT controls. We conclude that Orai1 channels regulate chemoconvulsant-induced excitation in GABAergic neurons and that destabilization of the excitatory/inhibitory balance in Orai1 KO mice aggravates chemoconvulsant-mediated seizures. These results identify Orai1 channels as novel molecular regulators of hippocampal neuronal excitability and seizures.
颞叶癫痫是一种由大脑兴奋抑制失衡引起的复杂神经疾病。越来越多的文献表明,钙信号改变与癫痫的许多方面有关,但调节这种综合征的钙通道的多样性尚未得到很好的理解。在这里,我们报告说,大脑中缺乏储存操作钙通道 Orai1 的小鼠对化学惊厥剂海人酸和匹罗卡品的反应表现出更强的癫痫发作。电生理分析显示,在抑制性神经元中选择性缺失 Orai1 通道会使 CA1 海马中海人酸诱导的 GABA 能神经元兴奋失活。同样,在 GABA 能神经元中缺失 Orai1 会消除海人酸诱导的 CA1 锥体神经元自发性抑制性突触后电流 (sIPSCs) 的爆发。这种化学惊厥抑制的丧失可能会加重 Orai1 KO 小鼠的癫痫持续状态。这些结果表明 Orai1 通道是海马中间神经元兴奋性和癫痫发作的调节因子。
储存操作的 Orai1 通道是许多细胞中钙内流的主要机制,调节包括基因表达、细胞因子产生和神经递质释放在内的多种功能。Orai1 在哺乳动物大脑的许多区域表达;然而,其在调节神经元兴奋性、突触功能和大脑疾病中的作用才刚刚开始被研究。为了研究化学惊厥剂诱导的癫痫持续状态中 Orai1 通道的潜在作用,我们在大脑中条件性缺失 Orai1(或其激活剂 STIM1)的小鼠中检查了海人酸 (KA) 和匹罗卡品腹腔注射诱发的急性癫痫发作。大脑特异性 Orai1 和 STIM1 敲除 (KO) 小鼠表现出明显更强的癫痫发作 (P=0.00003 和 P<0.00001),以及更高的化学惊厥诱导死亡率 (P=0.02),与野生型 (WT) 同窝仔相比。海马脑片的电生理记录显示,KA 刺激 CA1 海马中的抑制性中间神经元活性 (P=0.04),而在 Orai1 KO 小鼠中则未发生这种情况。此外,KA 和匹罗卡品使 CA1 锥体神经元的自发性 IPSC 频率增加了两倍以上 (KA: P=0.04;匹罗卡品:P=0.0002),而在 Orai1 KO 小鼠中则被消除。仅在 GABA 能神经元中选择性缺失 Orai1 的小鼠对 KA (P=0.001) 和匹罗卡品 (P<0.00001) 的癫痫发作也更强,并且与 WT 对照组相比,化学惊厥诱导的 sIPSC 反应增加丧失。我们得出结论,Orai1 通道调节 GABA 能神经元中海人酸诱导的兴奋,Orai1 KO 小鼠兴奋抑制平衡的不稳定加剧了化学惊厥介导的癫痫发作。这些结果表明 Orai1 通道是海马神经元兴奋性和癫痫发作的新型分子调节剂。