Khan Muhammad Shuaib, Kim Hyung-Jun, Kim Yoon-Hyun, Ebina Yasuo, Sugimoto Wataru, Sasaki Takayoshi, Osada Minoru
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Department of Nanoscience and Engineering, Waseda University, Shinjyuku, Tokyo, 169-8555, Japan.
Small. 2020 Oct;16(39):e2003485. doi: 10.1002/smll.202003485. Epub 2020 Aug 26.
Large size of capacitors is the main hurdle in miniaturization of current electronic devices. Herein, a scalable solution-based layer-by-layer engineering of metallic and high-κ dielectric nanosheets into multilayer nanosheet capacitors (MNCs) with overall thickness of ≈20 nm is presented. The MNCs are built through neat tiling of 2D metallic Ru O and high-κ dielectric Ca NaNb O nanosheets via the Langmuir-Blodgett (LB) approach at room temperature which is verified by cross-sectional high-resolution transmission electron microscopy (HRTEM). The resultant MNCs demonstrate a high capacitance of 40-52 µF cm and low leakage currents down to 10 -10 A cm . Such MNCs also possess complimentary in situ robust dielectric properties under high-temperature measurements up to 250 °C. Based on capacitance normalized by the thickness, the developed MNC outperforms state-of-the-art multilayer ceramic capacitors (MLCC, ≈22 µF cm /5 × 10 nm) present in the market. The strategy is effective due to the advantages of facile, economical, and ambient temperature solution assembly.
电容器的大尺寸是当前电子设备小型化的主要障碍。在此,我们提出了一种基于溶液的可扩展逐层工程方法,将金属和高κ介电纳米片组装成总厚度约为20 nm的多层纳米片电容器(MNC)。通过在室温下采用朗缪尔-布洛杰特(LB)方法将二维金属RuO和高κ介电CaNaNbO纳米片整齐平铺来构建MNC,这一点通过横截面高分辨率透射电子显微镜(HRTEM)得到了验证。所得的MNC展现出40 - 52 μF/cm²的高电容以及低至10⁻¹⁰ A/cm²的漏电流。这种MNC在高达250°C的高温测量下还具有互补的原位稳健介电性能。基于按厚度归一化的电容,所开发的MNC优于市场上现有的先进多层陶瓷电容器(MLCC,约22 μF/cm²/5×10³ nm)。由于简便、经济且在环境温度下进行溶液组装的优点,该策略是有效的。