Department of Chemistry, Kyonggi University , Suwon, Gyeonggi-Do, 16227, Republic of Korea.
Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science , Daejeon, 34113, Republic of Korea.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7347-7354. doi: 10.1021/acsami.6b15798. Epub 2017 Feb 14.
For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm), insulating property (leakage current densities <10 A/cm), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.
对于使用先进半导体的大面积、可打印和灵活的电子应用,需要开发具有优异电容、绝缘性能、热稳定性和机械柔韧性的新型介电材料,以实现薄膜晶体管(TFT)的高性能、超低电压操作。在这项工作中,我们首先报告了通过低温溶液处理来制造具有可调表面能的多功能混合多层栅介电材料,从而生产出超低电压有机和非晶氧化物 TFT。混合多层介电材料通过交替堆叠双功能膦酸基自组装单层与超薄高 k 氧化物层来构建。纳米级厚度可控的混合介电材料表现出优异的电容(高达 970 nF/cm)、绝缘性能(漏电流密度 <10 A/cm)和热稳定性(高达 300 °C)以及光滑表面(均方根粗糙度 <0.35 nm)。此外,通过在单功能和双功能膦酸基自组装单层之间切换,很容易改变混合多层介电材料的表面能,以与有机和非晶氧化物半导体兼容制造。因此,集成到 TFT 中的混合多层介电材料展现出优异的介电性能,实现了有机和非晶氧化物 TFT 的高性能、超低电压操作(< ± 2 V)。由于表面能易于调节,多功能混合多层介电材料也可适应各种有机和无机半导体以及其他器件结构中的金属栅极,从而允许各种先进的电子应用,包括超低功率和大面积电子设备。