Suppr超能文献

具有准三维拓扑结构的用于快速碘吸附的结肠形晶体二维共价有机框架(COF)

Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi-3D Topologies for Rapid I Adsorption.

作者信息

Guo Xinghua, Li Yang, Zhang Meicheng, Cao Kecheng, Tian Yin, Qi Yue, Li Shoujian, Li Kun, Yu Xiaoqi, Ma Lijian

机构信息

College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu, 610064, P. R. China.

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2020 Dec 7;59(50):22697-22705. doi: 10.1002/anie.202010829. Epub 2020 Oct 2.

Abstract

Constructing three-dimensional (3D) structural characteristics on two-dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi-three-dimensional (Q-3D) topologies, consisting of unique "stereoscopic" triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self-adaptable for the guest transmission. The as-prepared QTD-COFs have a faster adsorption rate (2.51 g h ) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g . The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD-COFs to be applied for the rapid removal of radioactive iodine.

摘要

在二维共价有机框架(COF)上构建三维(3D)结构特征是有效提高材料渗透性和传质速率并实现客体分子快速吸附的良好方法,同时避免了制备三维COF时的高成本和单体稀缺问题。在此,我们首次报道了一系列具有准三维(Q-3D)拓扑结构的棒状结晶二维COF,其由独特的“立体”三角形孔、大层间距和柔性结构单元组成,这些结构单元使孔具有弹性且能自适应客体传输。所制备的QTD-COF对碘的吸附速率(2.51 g h)比传统二维COF更快,具有前所未有的6.29 g g的最大吸附容量。优异的吸附性能以及突出的辐照稳定性使QTD-COF可用于快速去除放射性碘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验