Suppr超能文献

基于风险稳定性个体化预测调整低危前列腺癌主动监测强度。

Tailoring Intensity of Active Surveillance for Low-Risk Prostate Cancer Based on Individualized Prediction of Risk Stability.

机构信息

Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco.

Department of Epidemiology & Biostatistics, University of California, San Francisco.

出版信息

JAMA Oncol. 2020 Oct 1;6(10):e203187. doi: 10.1001/jamaoncol.2020.3187. Epub 2020 Oct 8.

Abstract

IMPORTANCE

Active surveillance is increasingly recognized as the preferred standard of care for men with low-risk prostate cancer. However, active surveillance requires repeated assessments, including prostate-specific antigen tests and biopsies that may increase anxiety, risk of complications, and cost.

OBJECTIVE

To identify and validate clinical parameters that can identify men who can safely defer follow-up prostate cancer assessments.

DESIGN, SETTING, AND PARTICIPANTS: The Canary Prostate Active Surveillance Study (PASS) is a multicenter, prospective active surveillance cohort study initiated in July 2008, with ongoing accrual and a median follow-up period of 4.1 years. Men with prostate cancer managed with active surveillance from 9 North American academic medical centers were enrolled. Blood tests and biopsies were conducted on a defined schedule for least 5 years after enrollment. Model validation was performed among men at the University of California, San Francisco (UCSF) who did not enroll in PASS. Men with Gleason grade group 1 prostate cancer diagnosed since 2003 and enrolled in PASS before 2017 with at least 1 confirmatory biopsy after diagnosis were included. A total of 850 men met these criteria and had adequate follow-up. For the UCSF validation study, 533 active surveillance patients meeting the same criteria were identified. Exclusion criteria were treatment within 6 months of diagnosis, diagnosis before 2003, Gleason grade score of at least 2 at diagnosis or first surveillance biopsy, no surveillance biopsy, or missing data.

EXPOSURES

Active surveillance for prostate cancer.

MAIN OUTCOMES AND MEASURES

Time from confirmatory biopsy to reclassification, defined as Gleason grade group 2 or higher on subsequent biopsy.

RESULTS

A total of 850 men (median [interquartile range] age, 64 [58-68] years; 774 [91%] White) were included in the PASS cohort. A total of 533 men (median [interquartile range] age, 61 [57-65] years; 422 [79%] White) were included in the UCSF cohort. Parameters predictive of reclassification on multivariable analysis included maximum percent positive cores (hazard ratio [HR], 1.30 [95% CI, 1.09-1.56]; P = .004), history of any negative biopsy after diagnosis (1 vs 0: HR, 0.52 [95% CI, 0.38-0.71]; P < .001 and ≥2 vs 0: HR, 0.18 [95% CI, 0.08-0.4]; P < .001), time since diagnosis (HR, 1.62 [95% CI, 1.28-2.05]; P < .001), body mass index (HR, 1.08 [95% CI, 1.05-1.12]; P < .001), prostate size (HR, 0.40 [95% CI, 0.25-0.62]; P < .001), prostate-specific antigen at diagnosis (HR, 1.51 [95% CI, 1.15-1.98]; P = .003), and prostate-specific antigen kinetics (HR, 1.46 [95% CI, 1.23-1.73]; P < .001). For prediction of nonreclassification at 4 years, the area under the receiver operating curve was 0.70 for the PASS cohort and 0.70 for the UCSF validation cohort. This model achieved a negative predictive value of 0.88 (95% CI, 0.83-0.94) for those in the bottom 25th percentile of risk and of 0.95 (95% CI, 0.89-1.00) for those in the bottom 10th percentile.

CONCLUSIONS AND RELEVANCE

In this study, among men with low-risk prostate cancer, heterogeneity prevailed in risk of subsequent disease reclassification. These findings suggest that active surveillance intensity can be modulated based on an individual's risk parameters and that many men may be safely monitored with a substantially less intensive surveillance regimen.

摘要

重要性

主动监测越来越被认为是低危前列腺癌患者的首选标准护理。然而,主动监测需要重复评估,包括前列腺特异性抗原检测和活检,这可能会增加焦虑、并发症风险和成本。

目的

确定并验证可用于安全推迟后续前列腺癌评估的临床参数。

设计、地点和参与者:Canary 前列腺主动监测研究(PASS)是一项多中心、前瞻性主动监测队列研究,于 2008 年 7 月启动,正在进行入组,中位随访时间为 4.1 年。来自 9 个北美的学术医疗中心的接受主动监测的前列腺癌患者入组。在入组后至少 5 年内,按照既定的时间表进行血液检测和活检。在加利福尼亚大学旧金山分校(UCSF)的男性中进行了模型验证,这些男性没有入组 PASS。符合以下标准的 Gleason 分级组 1 前列腺癌患者被纳入研究:自 2003 年以来诊断出的患者,并且在 2017 年之前已入组 PASS,并且在诊断后至少有 1 次确认性活检。共有 850 名符合这些标准且随访充分的男性被纳入研究。在 UCSF 的验证研究中,确定了 533 名符合相同标准的主动监测患者。排除标准为诊断后 6 个月内治疗、诊断前 2003 年、首次监测活检时 Gleason 分级评分至少为 2 分或更高、无监测活检或数据缺失。

暴露

前列腺癌的主动监测。

主要结果和测量指标

定义为随后活检时 Gleason 分级组 2 或更高的确认性活检后再分类的时间。

结果

在 PASS 队列中,共有 850 名男性(中位[四分位间距]年龄,64[58-68]岁;774[91%]白人)被纳入研究。在 UCSF 队列中,共有 533 名男性(中位[四分位间距]年龄,61[57-65]岁;422[79%]白人)被纳入研究。多变量分析预测再分类的参数包括最大阳性核心百分比(危险比[HR],1.30[95%CI,1.09-1.56];P=0.004)、诊断后任何阴性活检史(1 次 vs 0 次:HR,0.52[95%CI,0.38-0.71];P<0.001 和≥2 次 vs 0 次:HR,0.18[95%CI,0.08-0.4];P<0.001)、诊断后时间(HR,1.62[95%CI,1.28-2.05];P<0.001)、体重指数(HR,1.08[95%CI,1.05-1.12];P<0.001)、前列腺大小(HR,0.40[95%CI,0.25-0.62];P<0.001)、前列腺特异性抗原(PSA)在诊断时(HR,1.51[95%CI,1.15-1.98];P=0.003)和 PSA 动力学(HR,1.46[95%CI,1.23-1.73];P<0.001)。对于预测 4 年无再分类,PASS 队列的受试者工作特征曲线下面积为 0.70,UCSF 验证队列为 0.70。该模型在风险最低的 25%男性中实现了 0.88(95%CI,0.83-0.94)的阴性预测值,在风险最低的 10%男性中实现了 0.95(95%CI,0.89-1.00)的阴性预测值。

结论和相关性

在这项研究中,在低危前列腺癌男性中,疾病再分类的风险存在明显的异质性。这些发现表明,主动监测的强度可以根据个体的风险参数进行调整,许多男性可能可以通过一种实质性地较少密集的监测方案进行监测。

相似文献

引用本文的文献

本文引用的文献

1
Cancer statistics, 2020.癌症统计数据,2020 年。
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
4
The Diverse Genomic Landscape of Clinically Low-risk Prostate Cancer.临床低危前列腺癌的多样基因组景观。
Eur Urol. 2018 Oct;74(4):444-452. doi: 10.1016/j.eururo.2018.05.014. Epub 2018 May 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验