Kim Kyeong Min, Kim Hwan Kyu
Global GET-Future Lab., Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):42067-42080. doi: 10.1021/acsami.0c09519. Epub 2020 Aug 27.
The molecular weights and structural properties of polymers play key roles in the efficiency of gelators in polymer gel electrolytes (PGEs) for quasi-solid-state dye-sensitized solar cells (QSS-DSSCs). To find an appropriate gelator, we synthesized well-defined poly(acrylonitrile--,-dimethylacrylamide)--poly(ethylene glycol)--poly(acrylonitrile--,-dimethylacrylamide) ABA triblock copolymers with various molecular weights and copolymer compositions by reversible addition-fragmentation chain-transfer polymerization. The ratio of acrylonitrile (AN)/,-dimethylacrylamide (DMAA) in the triblock copolymers influences their solubility in liquid electrolytes (LEs) and thermal stability. The highest thermal stability was up to 360 °C, and this was achieved by the polymer with an AN/DMAA ratio of ≤4. The thermal stability was related to excessive randomness in the P(AN--DMAA) block that hinders cyclization among nitrile groups. Both the molecular weights and the AN/DMAA ratios enabled gel formation by controlling the amount of the polymer, and hence, they influence the ionic conductivity and diffusion as well. Based on the electrochemical properties, polymers with molecular weights above 100 kg/mole were efficient as PGEs in QSS-DSSCs. The overall power conversion efficiency (PCE) of 14 wt % PGE-based QSS-DSSCs was 9.72% under AM 1.5G solar illumination, comparable with an overall PCE of 9.79% for LE DSSCs. The overall PCE of the QSS-DSSCs further increased to 10.02% by incorporating 3 wt % TiO nanoparticles in the 14 wt % PGE. The PGE-based QSS-DSSC was also tested under indoor light conditions, and the best PCE of 21.26% was achieved under a white LED light of 1000 lux, which is higher than the PCE of 19.94% for the LE DSSC. The long-term device stability test under adverse conditions (50 °C and 1 sun illumination) reveals the improved stability of PGE-based QSS-DSSCs over LE DSSCs. In terms of PCE and long-term device stability, our PGE QSS-DSSCs have great potential over LE DSSCs for future indoor and outdoor applications.
聚合物的分子量和结构特性在用于准固态染料敏化太阳能电池(QSS-DSSC)的聚合物凝胶电解质(PGE)中凝胶剂的效率方面起着关键作用。为了找到合适的凝胶剂,我们通过可逆加成-断裂链转移聚合反应合成了具有不同分子量和共聚物组成的明确的聚(丙烯腈-,-二甲基丙烯酰胺)-聚(乙二醇)-聚(丙烯腈-,-二甲基丙烯酰胺)ABA三嵌段共聚物。三嵌段共聚物中丙烯腈(AN)/,-二甲基丙烯酰胺(DMAA)的比例会影响它们在液体电解质(LE)中的溶解度和热稳定性。最高热稳定性可达360℃,这是由AN/DMAA比例≤4的聚合物实现的。热稳定性与P(AN- - DMAA)嵌段中过多的无规性有关,这种无规性阻碍了腈基之间的环化。分子量和AN/DMAA比例都通过控制聚合物的量实现了凝胶形成,因此,它们也会影响离子电导率和扩散。基于电化学性质,分子量高于100 kg/mol的聚合物作为QSS-DSSC中的PGE是有效的。在AM 1.5G太阳光照下,基于14 wt% PGE的QSS-DSSC的总功率转换效率(PCE)为9.72%,与基于LE的DSSC的总PCE 9.79%相当。通过在14 wt% PGE中加入3 wt%的TiO纳米颗粒,QSS-DSSC的总PCE进一步提高到10.02%。基于PGE的QSS-DSSC也在室内光条件下进行了测试,在1000勒克斯的白色LED灯下实现了21.26%的最佳PCE,高于基于LE的DSSC的19.94%的PCE。在不利条件(50℃和1个太阳光照)下的长期器件稳定性测试表明,基于PGE的QSS-DSSC比基于LE的DSSC具有更好的稳定性。就PCE和长期器件稳定性而言,我们的PGE QSS-DSSC在未来的室内和室外应用中比基于LE的DSSC具有巨大潜力。