Li Juntao, Meng Zhu, Brett Dan J L, Shearing Paul R, Skipper Neal T, Parkin Ivan P, Gadipelli Srinivas
Department of Chemistry, University College London, London WC1H 0AJ, U.K.
Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42696-42703. doi: 10.1021/acsami.0c10151. Epub 2020 Sep 11.
Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced.
金属有机框架(MOF)相关衍生物在众多能量转换和存储应用中引起了极大关注,如吸附、催化和电池领域。然而,由于这些材料是通过MOF的多步合成后修饰制备的,通常涉及高温碳化和/或煅烧,存在可扩展性和可重复性问题,这阻碍了它们在实际中的应用。在此过程中,MOF充当自牺牲模板,以严重的质量损失为代价来制备功能材料,所得材料表现出复杂的工艺-性能关系。在这项工作中,我们报道了一种易于合成且可商购的MOF——沸石咪唑酯框架(ZIF-8)在可充电锌空气电池中的直接适用性。通过简单的溶液混合制备的钴基ZIF-8与铂炭黑的复合材料(ZIF-67@Pt/CB)对析氧反应(OER)和氧还原反应(ORR)显示出有前景的双功能电催化活性,这是电池中关键的充放电机制。ZIF-67@Pt/CB表现出长时间的OER/ORR活性耐久性,特别是与Pt/CB相比,ORR稳定性显著增强,分别为85%和52%。有趣的是,基于ZIF-67@Pt/CB的电池具有高性能,功率密度>150 mW/cm²,并且在100小时的充放电循环测试中具有长时间稳定性。如此优异的活性归因于原位电化学驱动形成的活性钴(氧)氢氧化物纳米相以及与铂纳米颗粒的界面相互作用。这项工作表明了锌空气电池的商业可行性,因为MOF阴极材料可以大规模可重复地合成并直接应用。