Department of Chemistry "Ugo Schiff" and CSGI, via della Lastruccia 3-13, 50019 Florence, Italy.
Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
Langmuir. 2020 Sep 22;36(37):10941-10951. doi: 10.1021/acs.langmuir.0c01544. Epub 2020 Sep 11.
In the last few years, hybrid lipid-copolymer assemblies have attracted increasing attention as possible two-dimensional (2D) membrane platforms, combining the biorelevance of the lipid building blocks with the stability and chemical tunability of copolymers. The relevance of these systems varies from fundamental studies on biological membrane-related phenomena to the construction of 2D complex devices for material science and biosensor technology. Both the fundamental understanding and the application of hybrid lipid-copolymer-supported bilayers require thorough physicochemical comprehension and structural control. Herein, we report a comprehensive physicochemical and structural characterization of hybrid monolayers at the air/water interface and of solid-supported hybrid membranes constituted by 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) and the block copolymer poly(butadiene--ethyleneoxide) (PBD--PEO). Hybrid lipid-copolymer supported bilayers (HSLBs) with variable copolymer contents were prepared through spontaneous rupture and fusion of hybrid vesicles onto a hydrophilic substrate. The properties of the thin films and the parent vesicles were probed through dynamic light scattering (DLS), differential scanning calorimetry (DSC), optical ellipsometry, quartz crystal microbalance with dissipation monitoring (QCM-D), and confocal scanning laser microscopy (CSLM). Stable, hybrid lipid/copolymer systems were obtained for a copolymer content of 10-65 mol %. In particular, DSC and CSLM show lateral phase separation in these hybrid systems. These results improve our fundamental understanding of HSLBs, which is necessary for future applications of hybrid systems as biomimetic membranes or as drug delivery systems, with additional properties with respect to phospholipid liposomes.
在过去的几年中,混合脂质 - 共聚物组装体作为可能的二维(2D)膜平台引起了越来越多的关注,将脂质构建块的生物相关性与共聚物的稳定性和化学可调性结合在一起。这些系统的相关性从与生物膜相关现象的基础研究到用于材料科学和生物传感器技术的 2D 复杂器件的构建都有所不同。混合脂质 - 共聚物支撑双层的基础理解和应用都需要彻底的物理化学理解和结构控制。在此,我们报告了在空气/水界面处的混合单层和由 1,2-二棕榈酰基 - 甘油-3-磷酸胆碱(DPPC)和嵌段共聚物聚丁二烯 - 聚环氧乙烷(PBD-PEO)组成的固载混合膜的全面物理化学和结构表征。通过混合囊泡自发破裂和融合到亲水基底上,制备了具有可变共聚物含量的混合脂质 - 共聚物支撑双层(HSLB)。通过动态光散射(DLS)、差示扫描量热法(DSC)、椭圆偏光仪、石英晶体微天平(QCM-D)和共聚焦扫描激光显微镜(CSLM)探测薄膜和母囊泡的性质。对于 10-65 mol%的共聚物含量,获得了稳定的混合脂质/共聚物系统。特别是,DSC 和 CSLM 显示这些混合系统中的横向相分离。这些结果提高了我们对 HSLB 的基本理解,这对于作为仿生膜或药物传递系统的混合系统的未来应用是必要的,与磷脂脂质体相比具有额外的性质。