Suppr超能文献

构建可重复生化模型的最佳实践

Best Practices for Making Reproducible Biochemical Models.

作者信息

Porubsky Veronica L, Goldberg Arthur P, Rampadarath Anand K, Nickerson David P, Karr Jonathan R, Sauro Herbert M

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Cell Syst. 2020 Aug 26;11(2):109-120. doi: 10.1016/j.cels.2020.06.012.

Abstract

Like many scientific disciplines, dynamical biochemical modeling is hindered by irreproducible results. This limits the utility of biochemical models by making them difficult to understand, trust, or reuse. We comprehensively list the best practices that biochemical modelers should follow to build reproducible biochemical model artifacts-all data, model descriptions, and custom software used by the model-that can be understood and reused. The best practices provide advice for all steps of a typical biochemical modeling workflow in which a modeler collects data; constructs, trains, simulates, and validates the model; uses the predictions of a model to advance knowledge; and publicly shares the model artifacts. The best practices emphasize the benefits obtained by using standard tools and formats and provides guidance to modelers who do not or cannot use standards in some stages of their modeling workflow. Adoption of these best practices will enhance the ability of researchers to reproduce, understand, and reuse biochemical models.

摘要

与许多科学学科一样,动态生化建模受到不可重复结果的阻碍。这使得生化模型难以理解、信任或重用,从而限制了其效用。我们全面列出了生化模型构建者应遵循的最佳实践,以构建可重复的生化模型工件——模型所使用的所有数据、模型描述和定制软件——这些工件应易于理解和重用。这些最佳实践为典型生化建模工作流程的所有步骤提供建议,在该工作流程中,建模者收集数据;构建、训练、模拟和验证模型;利用模型的预测来推进知识;并公开共享模型工件。最佳实践强调使用标准工具和格式所带来的好处,并为那些在建模工作流程的某些阶段未使用或无法使用标准的建模者提供指导。采用这些最佳实践将提高研究人员复制、理解和重用生化模型的能力。

相似文献

1
Best Practices for Making Reproducible Biochemical Models.构建可重复生化模型的最佳实践
Cell Syst. 2020 Aug 26;11(2):109-120. doi: 10.1016/j.cels.2020.06.012.
4
Guidelines for Reproducibly Building and Simulating Systems Biology Models.可重复构建和模拟系统生物学模型的指南。
IEEE Trans Biomed Eng. 2016 Oct;63(10):2015-20. doi: 10.1109/TBME.2016.2591960. Epub 2016 Jul 18.
5
Standards, dissemination, and best practices in systems biology.系统生物学中的标准、传播和最佳实践。
Curr Opin Biotechnol. 2023 Jun;81:102922. doi: 10.1016/j.copbio.2023.102922. Epub 2023 Mar 31.

引用本文的文献

1
SIMPROV: Provenance capturing for simulation studies.SIMPROV:用于模拟研究的溯源捕获
PLoS One. 2025 Jul 8;20(7):e0327607. doi: 10.1371/journal.pone.0327607. eCollection 2025.
9
Standards, dissemination, and best practices in systems biology.系统生物学中的标准、传播和最佳实践。
Curr Opin Biotechnol. 2023 Jun;81:102922. doi: 10.1016/j.copbio.2023.102922. Epub 2023 Mar 31.

本文引用的文献

2
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
PyBioNetFit and the Biological Property Specification Language.PyBioNetFit与生物特性规范语言。
iScience. 2019 Sep 27;19:1012-1036. doi: 10.1016/j.isci.2019.08.045. Epub 2019 Aug 28.
7
iBioSim 3: A Tool for Model-Based Genetic Circuit Design.iBioSim 3:一种基于模型的基因电路设计工具。
ACS Synth Biol. 2019 Jul 19;8(7):1560-1563. doi: 10.1021/acssynbio.8b00078. Epub 2018 Jul 11.
8
A blueprint for human whole-cell modeling.人类全细胞建模蓝图。
Curr Opin Syst Biol. 2018 Feb;7:8-15. doi: 10.1016/j.coisb.2017.10.005. Epub 2017 Nov 9.
9
Emerging whole-cell modeling principles and methods.新兴的全细胞建模原理和方法。
Curr Opin Biotechnol. 2018 Jun;51:97-102. doi: 10.1016/j.copbio.2017.12.013. Epub 2017 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验